首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Itoh  T D Ming  T Hayashi  Y Mochizuki    M Homma 《Journal of virology》1990,64(11):5660-5664
A protease-activation mutant of Sendai virus, TCs, was isolated from a trypsin-resistant mutant, TR-5. TCs was activated in vitro by both trypsin and chymotrypsin. TCs was, however, less sensitive to trypsin and chymotrypsin than were the wild-type virus and TR-5, respectively. F protein of TCs had a single amino acid substitution at residue 114 from glutamine to arginine, resulting in the appearance of the new cleavage site for trypsin and the shift of the cleavage site for chymotrypsin. Activation of TCs in the lungs of mice occurred less efficiently than that of the wild type, and TCs caused a less severe pneumopathogenicity than did the wild-type virus, which supports our previous view that the in vitro trypsin sensitivity of Sendai virus can be a good indication of pneumopathogenicity in mice.  相似文献   

2.
M Tashiro  Y Fujii  K Nakamura    M Homma 《Journal of virology》1988,62(7):2490-2497
Our previous study has shown that, although a trypsin-resistant mutant of Sendai virus, TR-2, replicates only in a single cycle in mouse lung with a negligible lesion, the animal acquires a strong immunity against lethal infection with wild-type Sendai virus, suggesting that TR-2 could be used as a new type of live vaccine (M. Tashiro and M. Homma, J. Virol. 53:228-234, 1985). In the present study, we investigated the immunological response elicited in TR-2-infected mice, particularly with respect to cell-mediated immunity. Analyses of cytotoxic activities of spleen cells with 51Cr release assays revealed that Sendai virus-specific T lymphocytes (CTL), in addition to natural killer activity and antiviral antibodies, were induced in DBA/2 and C3H/He mice infected intranasally with TR-2. Proteolytic activation of the fusion glycoprotein F was required for the primary induction of CTL, though not necessarily for stimulation of natural killer and antibody responses. Memory of the CTL induced by TR-2 was long-lasting and was recalled in vivo immediately after challenge with wild-type Sendai virus. In contrast to TR-2, immunization with inactive split vaccine failed to induce the CTL response, but it elicited a high titer of serum antibody and a low level of natural killer activity.  相似文献   

3.
A trypsin-resistant mutant of Sendai virus, TR-2, which could be activated by chymotrypsin but not by trypsin or the protease present in mouse lung, was inoculated intranasally into mice after being activated in vitro. TR-2 hardly brought about clinical illness or lung lesions in mice; the protease present in the lung could not activate the progeny virus, and the infection terminated after one-step replication. Nevertheless, the immunoglobulin A antibody against wild-type Sendai virus was produced in the respiratory tracts as well as the serum immunoglobulin G antibody, and the mice were protected from the challenge of the wild-type Sendai virus. On the basis of these results, TR-2 may provide a new model of live vaccine for paramyxoviruses; its availability as a live vaccine is also discussed.  相似文献   

4.
Sendai virus pneumonia was produced in BALB/c mice fed protein-deficient diets in an effort to understand the severity of viral pneumonia in infants in developing countries. Animals on the deficient diet became clinically malnourished, and some aspects of cellular immunity were altered. In protein-deprived animals, the 50% lethal dose of intranasally administered Sendai virus was over 1,000-fold lower, pulmonary virus titers were higher, the infection was prolonged, and lung infection was established at a lower inoculum than in normal animals.  相似文献   

5.
X L Wang  M Itoh  H Hotta    M Homma 《Journal of virology》1994,68(5):3369-3373
Sendai virus fresh isolates were shown to be antigenically different from the prototype Fushimi strain that had long been passaged in embryonated chicken eggs. Phylogenetic analysis of the hemagglutinin-neuraminidase genes also revealed the difference between these two virus groups. Both trypsin-resistant and elastase-sensitive mutations were additionally introduced to an LLC-MK2-cell-adapted and attenuated mutant derived from one of the fresh isolates. This protease activation mutant (MVCES1) showed the same antigenicity as the fresh isolates, and as a result of a single cycle of growth in lungs, it could confer better protection on mice against challenge infection with the currently prevailing Sendai virus than TR-5, which is a trypsin-resistant mutant derived from the Fushimi strain. The eligibility of MVCES1 as an attenuated live vaccine of Sendai virus is discussed.  相似文献   

6.
Substantial progress has been made in understanding Ag presentation to T cells; however, relatively little is known about the location and frequency of cells presenting viral Ags during a viral infection. Here, we took advantage of a highly sensitive system using lacZ-inducible T cell hybridomas to enumerate APCs during the course of respiratory Sendai virus infection in mice. Using lacZ-inducible T cell hybridomas specific for the immunodominant hemagglutinin-neuraminidase HN421-436/I-Ab and nucleoprotein NP324-332/Kb epitopes, we detected APCs in draining mediastinal lymph nodes (MLNs), in cervical lymph nodes, and also in the spleen. HN421-436/I-Ab- and NP324-332/Kb-presenting cells were readily detectable between days 3 and 9 postinfection, with more APCs present in the MLN than in the cervical lymph nodes. Interestingly, no infectious virus was detected in lymphoid tissue beyond day 6, suggesting that a depot of noninfectious viral Ag survives, in some form, for 2-3 days after viral clearance. Fractionation of the MLN demonstrated that APC frequency was enriched in dendritic cells and macrophages but depleted in the B cell population, suggesting that B cells do not form a large population of APCs during the primary response to this virus.  相似文献   

7.
A protease activation mutant of Sendai virus, F1-R, causes a systemic infection in mice, whereas wild-type virus is exclusively pneumotropic (M. Tashiro, E. Pritzer, M. A. Khoshnan, M. Yamakawa, K. Kuroda, H.-D. Klenk, R. Rott, and J. T. Seto, Virology 165:577-583, 1988). Budding of F1-R has been observed bidirectionally at the apical and basolateral surfaces of the bronchial epithelium of mice and of MDCK cells, whereas wild-type virus buds apically (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J. T. Seto, J. Virol. 64:3627-3634, 1990). In this study, wild-type virus was shown to be produced primarily from the apical site of polarized MDCK cells grown on permeable membrane filters. Surface immunofluorescence and immunoprecipitation analyses revealed that transmembrane glycoproteins HN and F were expressed predominantly at the apical domain of the plasma membrane. On the other hand, infectious progeny of F1-R was released from the apical and basolateral surfaces, and HN and F were expressed at both regions of the cells. Since F1-R has amino acid substitutions in F and M proteins but none in HN, the altered budding of the virus and transport of the envelope glycoproteins might be attributed to interactions by F and M proteins. These findings suggest that in addition to proteolytic activation of the F glycoprotein, the differential site of budding, at the primary target of infection, is a determinant for organ tropism of Sendai virus in mice.  相似文献   

8.
Here, we report that specific manipulations of the cellular response to virus infection can cause prevention of apoptosis and consequent establishment of persistent infection. Infection of several human cell lines with Sendai virus (SeV) or human parainfluenza virus 3, two prototypic paramyxoviruses, caused slow apoptosis, which was markedly accelerated upon blocking the action of phosphatidylinositol 3-kinases (PI3 kinases) in the infected cells. The observed apoptosis required viral gene expression and the action of the caspase 8 pathway. Although virus infection activated PI3 kinase, as indicated by AKT activation, its blockage did not inhibit JNK activation or IRF-3 activation. The action of neither the Jak-STAT pathway nor the NF-kappaB pathway was required for apoptosis. In contrast, IRF-3 activation was essential, although induction of the proapototic protein TRAIL by IRF-3 was not required. When IRF-3 was absent or its activation by the RIG-I pathway was blocked, SeV established persistent infection, as documented by viral protein production and infectious virus production. Introduction of IRF-3 in the persistently infected cells restored the cells' ability to undergo apoptosis. These results demonstrated that in our model system, IRF-3 controlled the fate of the SeV-infected cells by promoting apoptosis and preventing persistence.  相似文献   

9.
Mechanisms of protection of mice from Sendai virus, which is exclusively pneumotropic and causes a typical respiratory disease, by immunization with recombinant vaccinia viruses (RVVs) were investigated. Although the RVV carrying a hemagglutinin-neuraminidase gene of Sendai virus (Vac-HN) propagated in the noses and lungs of mice by either intranasal (i.n.) or intraperitoneal (i.p.) inoculation, no vaccinia virus antigens were detected in the mucosal layer of upper and lower airways of the i.p.-inoculated mice. The mice immunized i.n. with Vac-HN or Vac-F (the RVV carrying a fusion protein gene of Sendai virus) demonstrated the strong resistance to Sendai virus challenge both in the lung and in the nose, whereas the i.p.-immunized mice showed almost no resistance in the nose but showed a partial resistance in the lung. Titration of Sendai virus-specific antibodies in the nasal wash (NW), bronchoalveolar lavage (BAL), and serum collected from the Vac-F-immunized mice showed that the NW from the i.n.-immunized mice contained immunoglobulin A (IgA) antibodies but no IgG and the BAL from the mice contained both IgA and IgG antibodies. On the other hand, neither IgA nor IgG antibodies were detected in the NW from the i.p.-immunized mice and only IgG antibodies were detected in the BAL, although both i.n.- and i.p.-immunized mice exhibited similar levels of serum IgG, IgA, and neutralizing antibodies. The resistance to Sendai virus in the noses of i.n.-immunized mice could be abrogated by the intranasal instillation of anti-mouse IgA but not of anti-IgG antiserum, while the resistance in the lung was not significantly abrogated by such treatments. These results demonstrate that IgA is a major mediator for the immunity against Sendai virus induced by the RVVs and IgG is a supplementary one, especially in the lung, and that the RVV should be intranasally inoculated to induce an efficient mucosal immunity even if it has a pantropic nature.  相似文献   

10.
H Goto  K Shimizu 《Jikken dobutsu》1978,27(4):423-426
To study the role of maternal antibody in infection with Sendai virus in mice, maternally immune and non-immune mice, aged 4 to 5 weeks, were placed in cages with infector mice and the cages were kept for 19 days in a vinyl isolator. Neither increase of hemagglutination inhibiting antibody titers nor gross pulmonary lesions was recognized on the immune mice during the observation period in contrast with the non-immune mice. However, the multiplication of the virus in their respiratory tracts was the same or slightly low as compared with that of non-immune mice.  相似文献   

11.
S Chen  P Levesque  E Pomert    R E Pollack 《Journal of virology》1987,61(11):3521-3527
pSVCT3 is a cytoplasmic-localization mutant of simian virus 40 (SV40) isolated from the SV40 adenovirus 7 hybrid virus (PARA) and cloned into plasmid PBR. The large T antigen of pSVCT3 accumulates in the cytoplasm of infected monkey cells instead of being transported to the nucleus. The sole change in CT3 large T antigen is amino acid residue 128 (Lys----Asn). Transformation of precrisis rodent cells by pSVCT3 is negligible, whereas the frequency of transformation of established rodent cell lines by pSVCT3 is comparable to that of wild-type SV40. According to the model, in which transformation of precrisis cells involves the combined oncogenic action of both nuclear and cytoplasmic gene products, we predicted that pSVCT3 would localize in the cytoplasm of human cells and would therefore at most only partially and rarely transform precrisis human cells. We have found that pSVCT3 is able to transform precrisis human cells at high frequency. Furthermore, pSVCT3-transformed human precrisis cells relocalized T antigen to their nuclei. The relocalization of large T antigen was not dependent on cell growth. Wild-type and pSVCT3-transformed human cell lines both have about five copies of integrated SV40 DNA. SV40 virus-specific proteins, including the 100,000-molecular-weight super large T antigen, were expressed in pSVCT3-transformed human cells. Our results suggest that molecules in precrisis human cells, but not cells of other species, are able to complement the cytoplasmic-localization defect of the CT3 mutant large T antigen.  相似文献   

12.
The mutation in the temperature-sensitive tsA58 mutant T antigen (Ala-438----Val) lies within the presumptive ATP-binding fold. We have constructed a recombinant baculovirus that expresses large quantities of the tsA58 T antigen in infected insect cells. The mutant T antigen mediated simian virus 40 origin-containing DNA (ori-DNA) synthesis in vitro to nearly the same extent as similar quantities of wild-type T antigen at 33 degrees C. However, if wild-type and tsA58 T antigens were heated at 41 degrees C in replication extracts prior to addition of template DNA, the tsA58 T antigen but not the wild type was completely inactivated. The mutant protein displayed greater thermosensitivity for many of the DNA replication activities of T antigen than did the wild-type protein. Some of the replication functions of tsA58 T antigen were differentially affected depending on the presence or absence of ATP during the preheating period. When tsA58 T antigen was preheated in the presence of ATP at 41 degrees C for a time sufficient to completely inactivate its ability to replicate ori-DNA in vitro, it displayed substantial ATPase and normal DNA helicase activities. Conversely, when preheated in the absence of nucleotide, it completely lost both ATPase and helicase activities. Preheating tsA58 T antigen, even in the presence of ATP, led to drastic reductions in its ability to bind to and unwind DNA containing the replication origin. The mutant T antigen also displayed thermosensitivity for binding to and unwinding nonspecific double-stranded DNA in the presence of ATP. Our results suggest that the interactions of T antigen with ATP that are involved in T-antigen DNA binding and DNA helicase activities are different. Moreover, we conclude, consistent with its phenotype in vivo, that the tsA58 T antigen is defective in the initiation but not in the putative elongation functions of T antigen in vitro.  相似文献   

13.
It was previously shown that a temperature-sensitive mutant of Sendai virus, ts-23, readily establishes persistent infection in Vero cells at 37 C, a permissive temperature for growth of the mutant. In the present study, it was demonstrated that the virus yield from ts-23-infected Vero cells at 37 C began to decrease 48 to 72 hr postinfection, after an initial phase of high virus production. Before the decrease in virus production, the formation of viral nucleoprotein declined, although synthesis of all species of viral protein continued. It was suggested that the limited formation of viral nucleoprotein and the decrease in virus production were due to the restriction of viral RNA synthesis which began to occur early after infection in ts-23-infected cells at 37 C. The mutant has a temperature-sensitive defect in RNA polymerase activity and the temperature 37 C, used for establishment of persistent infection, would be a semi-permissive temperature for the RNA polymerase activity of the mutant. The ts-23 mutant interfered with the replication of the parental wild virus in Vero cells at 37 C.  相似文献   

14.
15.
The ability of the Sendai virus major nucleocapsid protein, NP, to support the in vitro synthesis and encapsidation of viral genome RNA during Sendai virus RNA replication was studied. NP protein was purified from viral nucleocapsids isolated from Sendai virus-infected BHK cells and shown to be a soluble monomer under the reaction conditions used for RNA synthesis. The purified NP protein alone was necessary and sufficient for in vitro genome RNA synthesis and encapsidation from preinitiated intracellular Sendai virus defective interfering particle (DI-H) nucleocapsid templates. The amount of DI-H RNA replication increased linearly with the addition of increasing amounts of NP protein. With purified detergent-disrupted DI-H virions as the template, however, there was no genome RNA synthesis in either the absence or presence of the NP protein. Furthermore, addition of the soluble protein fraction of uninfected cells alone or in the presence of purified NP protein also did not support DI-H genome RNA synthesis from purified DI-H. Another viral component in addition to the NP protein appears to be required for the initiation of encapsidation, since the soluble protein fraction of infected but not uninfected cells did support DI-H genome replication from purified DI-H.  相似文献   

16.
An amphotericin B-resistant mutant (AMBr-1) isolated from the Chinese hamster V79 cell line is defective in a pathway for sterol synthesis and contains a much reduced free cholesterol level as compared with the parental V79. The character of the plasma membrane of AMBr-1 was compared with that of V79 by measuring the fusion with the envelope of the Sendai virus and also by measuring membrane fluidity: AMBr-1 was found to be more sensitive to Sendai virus-induced cytolysis than V79. Both assays for membrane-permeability change and electron spin resonance (ESR) study showed an enhanced response to the fusion between viral envelope and plasma membrane in AMBr-1 cells. Measurement of the fluorescence polarization for 1,6-diphenyl-1,3,5-hexatriene suggested that the membrane of AMBr-1 was more fluid than that of V79. This aberrant nature of the cell membrane of AMBr-1 might be caused by the altered membranous sterol content.  相似文献   

17.
18.
M Tashiro  J T Seto  H D Klenk    R Rott 《Journal of virology》1993,67(10):5902-5910
Envelope glycoproteins F and HN of wild-type Sendai virus are transported to the apical plasma membrane domain of polarized epithelial MDCK cells, where budding of progeny virus occurs. On the other hand, a pantropic mutant, F1-R, buds bipolarly at both the apical and basolateral domains, and the viral glycoproteins have also been shown to be transported to both of these domains (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J.T. Seto, J. Virol. 64:4672-4677, 1990). MDCK cells were infected with wild-type virus and treated with the microtubule-depolymerizing drugs colchicine and nocodazole. Budding of the virus and surface expression of the glycoproteins were found to occur in a nonpolarized fashion similar to that found in cells infected with F1-R. In uninfected cells, the drugs were shown to interfere with apical transport of a secretory cellular glycoprotein, gp80, and basolateral uptake of [35S]methionine as well as to disrupt microtubule structure, indicating that cellular polarity of MDCK cells depends on the presence of intact microtubules. Infection by the F1-R mutant partially affected the transport of gp80, uptake of [35S]methionine, and the microtubule network, whereas wild-type virus had a marginal effect. These results suggest that apical transport of the glycoproteins of wild-type Sendai virus in MDCK cells depends on intact microtubules and that bipolar budding by F1-R is possibly due, at least in part, to the disruption of microtubules. Nucleotide sequence analyses of the viral genes suggest that the mutated M protein of F1-R might be involved in the alteration of microtubules.  相似文献   

19.
Sendai virus infection transmitted by contact from cagemates was followed by virus titration and immunofluorescence. The virus grew in the respiratory tract and caused macroscopic lesions in all contact mice. The virus grew to a higher titer in the lung than in the trachea. Tracheal smears, however, were found to be the most suitable for the diagnosis of Sendai virus infection by immunofluorescence, since they contained a large number of cells with intense fluorescence. Diagnosis of Sendai virus infection was made by immunofluorescence within a few hours after autopsy made at early stages of infection.  相似文献   

20.
Wild-type Sendai virus buds at the apical plasma membrane domain of polarized epithelial MDCK cells, whereas a pantropic mutant, F1-R, buds at both the apical and basolateral domains. In F1-R-infected cells, polarized protein transport and the microtubule network are impaired. It has been suggested that the mutated F and/or M proteins in F1-R are responsible for these changes (M. Tashiro, J. T. Seto, H.-D. Klenk, and R. Rott, J. Virol. 67:5902-5910, 1993). To clarify which gene or mutation(s) was responsible for the microtubule disruption which leads to altered budding of F1-R, MDCK cell lines containing the M gene of either the wild type or F1-R were established. When wild-type M protein was expressed at a level corresponding to that synthesized in virus-infected cells, cellular polarity and the integrity of the microtubules were affected to some extent. On the other hand, expression of the mutated F1-R M protein resulted in the formation of giant cells about 40 times larger than normal MDCK cells. Under these conditions, the effects on the microtubule network were enhanced. The microtubules were disrupted and polarized protein transport was impaired as indicated by the nonpolarized secretion of gp80, a host cell glycoprotein normally secreted from the apical domain, and bipolar budding of wild-type and F1-R Sendai viruses. The mutated F glycoprotein of F1-R was transported bipolarly in cells expressing the F1-R M protein, whereas it was transported predominantly to the apical domain when expressed alone or in cells coexpressing the wild-type M protein. These findings indicate that the M protein of F1-R is involved in the disruption of the microtubular network, leading to impairment of cellular polarity, bipolar transport of the F glycoprotein, and bipolar budding of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号