首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NHE1, NHE2, andNHE3 are well-characterized cloned members of the mammalianNa+/H+exchanger (NHE) gene family. Given the specialized function and regulation of NHE1, NHE2, and NHE3, we compared basal turnover numbersof NHE1, NHE2, and NHE3 measured in the same cell system: PS120fibroblasts lacking endogenous NHEs. NHE1, NHE2, and NHE3 were epitopetagged with vesicular stomatitis virus glycoprotein (VSVG). Thefollowing characteristics were determined on the same passage of cellstransfected with NHE1V, NHE2V, or NHE3V:1) maximal reaction velocity(Vmax) by22Na+uptake and fluorometery, 2) totalamount of NHE protein by quantitative Western analysis with internalstandards of VSVG-tagged maltose-binding protein, and3) cell surface expression by cellsurface biotinylation. Cell surface expression (percentage of totalNHE) was 88.8 ± 3.5, 64.6 ± 3.3, 20.0 ± 2.6, and 14.0 ± 1.3 for NHE1V, 85- and 75-kDa NHE2V, and NHE3V, respectively. Despitethese divergent cell surface expression levels, turnover numbers forNHE1, NHE2, and NHE3 were similar (80.3 ± 9.6, 92.1 ± 8.6, and99.2 ± 9.1 s1, whenVmax wasdetermined using 22Na uptake at22°C and 742 ± 47, 459 ± 16, and 609 ± 39 s1 whenVmax wasdetermined using fluorometry at 37°C). These data indicate that, inthe same cell system, intrinsic properties that determine turnovernumber are conserved among NHE1, NHE2, and NHE3.

  相似文献   

2.
Protein kinase D inhibits plasma membrane Na+/H+ exchanger activity   总被引:3,自引:0,他引:3  
The regulation of plasma membraneNa+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel proteinkinase C- and phorbol ester-regulated kinase, was investigated. Todetermine the effect of PKD on NHE activity in vivo, intracellular pH(pHi) measurements were made inCOS-7 cells by microepifluorescence using the pH indicator cSNARF-1.Cells were transfected with empty vector (control), wild-type PKD, orits kinase-deficient mutant PKD-K618M, together with green fluorescentprotein (GFP). NHE activity, as reflected by the rate of acid efflux(JH), wasdetermined in single GFP-positive cells following intracellularacidification. Overexpression of wild-type PKD had no significanteffect on JH(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control atpHi 7.0). In contrast,overexpression of PKD-K618M increasedJH (5.31 ± 0.57 mM/min at pHi 7.0;P < 0.05 vs. control). Transfectionwith these constructs produced similar effects also in A-10 cells,indicating that native PKD may have an inhibitory effect on NHE in bothcell types, which is relieved by a dominant-negative action ofPKD-K618M. Exposure of COS-7 cells to phorbol ester significantlyincreased JH in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M(because basal JHwas already near maximal). A fusion protein containing the cytosolicregulatory domain (amino acids 637-815) of NHE1 (the ubiquitousNHE isoform) was phosphorylated in vitro by wild-type PKD, but with lowstoichiometry. These data suggest that PKD inhibits NHE activity,probably through an indirect mechanism, and represents a novel pathwayin the regulation of the exchanger.

  相似文献   

3.
Initiation of intestinal Na+-glucose cotransport results intransient cell swelling and sustained increases in tight junction permeability. Since Na+/H+ exchange has beenimplicated in volume regulation after physiological cell swelling, wehypothesized that Na+/H+ exchange might also berequired for Na+-glucose cotransport-dependent tightjunction regulation. In Caco-2 monolayers with activeNa+-glucose cotransport, inhibition ofNa+/H+ exchange with 200 µM5-(N,N-dimethyl)- amiloride induced 36 ± 2% increases in transepithelial resistance (TER). Evaluation using multiple Na+/H+ exchange inhibitors showed thatinhibition of the Na+/H+ exchanger 3 (NHE3)isoform was most closely related to TER increases. TER increases due toNHE3 inhibition were related to cytoplasmic acidification becausecytoplasmic alkalinization with 5 mM NH4Cl prevented bothcytoplasmic acidification and TER increases. However, NHE3 inhibitiondid not affect TER when Na+-glucose cotransport wasinhibited. Myosin II regulatory light chain (MLC) phosphorylationdecreased up to 43 ± 5% after inhibition ofNa+/H+ exchange, similar to previous studiesthat associate decreased MLC phosphorylation with increased TER afterinhibition of Na+-glucose cotransport. However, NHE3inhibitors did not diminish Na+-glucose cotransport. Thesedata demonstrate that inhibition of NHE3 results in decreased MLCphosphorylation and increased TER and suggest that NHE3 may participatein the signaling pathway of Na+-glucosecotransport-dependent tight junction regulation.

  相似文献   

4.
Role of Na(+)/H(+) exchanger during O(2) deprivation in mouse CA1 neurons   总被引:1,自引:0,他引:1  
To determine the role ofmembrane transporters in intracellular pH (pHi) regulationunder conditions of low microenvironmental O2, we monitoredpHi in isolated single CA1 neurons using the fluorescentindicator carboxyseminaphthorhodafluor-1 and confocal microscopy. Aftertotal O2 deprivation or anoxia (PO2 0 Torr), a large increase in pHi was seen in CA1neurons in HEPES buffer, but a drop in pHi, albeit small,was observed in the presence of HCO. Ionicsubstitution and pharmacological experiments showed that the largeanoxia-induced pHi increase in HEPES buffer was totallyNa+ dependent and was blocked by HOE-694, stronglysuggesting the activation of the Na+/H+exchanger (NHE). Also, this pHi increase in HEPES bufferwas significantly smaller in Na+/H+ exchangerisoform 1 (NHE1) null mutant CA1 neurons than in wild-type neurons,demonstrating that NHE1 is responsible for part of the pHiincrease following anoxia. Both chelerythrine and H-89 partly blocked,and H-7 totally eliminated, this anoxia-induced pHiincrease in the absence of HCO. We conclude that1) O2 deprivation activatesNa+/H+ exchange by enhancing protein kinaseactivity and 2) membrane proteins, such as NHE, activelyparticipate in regulating pHi during low-O2states in neurons.

  相似文献   

5.
Proteases,glycosidases, and impermeant biotin derivatives were used incombination with antibodies to analyze the subcellular distribution andtransmembrane disposition of theNa+/H+exchanger NHE1. Both native human NHE1 in platelets and epitope-tagged rat NHE1 transfected into antiport-deficient cells were used for thesestudies. The results indicated that1) the entire population ofexchangers is present on the surface membrane of unstimulated platelets, ruling out regulation by recruitment of internal stores ofNHE1; 2) the putative extracellularloops near the NH2 terminus areexposed to the medium and contain all the N- andO-linked carbohydrates;3) by contrast, the putativeextracellular loops between transmembrane domains 9-10 and11-12 are not readily accessible from the outside and may befolded within the protein, perhaps contributing to an aqueous iontransport pathway; 4) the extreme COOH terminus of the protein was found to be inaccessible toextracellular proteases, antibodies, and other impermeant reagents,consistent with a cytosolic localization; and5) detachment of ~150 amino acidsfrom the NH2-terminal end of theprotein had little effect on the transport activity of NHE1.

  相似文献   

6.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

7.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO3 absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na+/H+ exchangers (NHE). In the MTAL, apical NHE3 mediates H+ secretion necessary for HCO3 absorption; basolateral NHE1 influences HCO3 absorption by regulating apical NHE3 activity. In microperfused rat MTALs, the addition of 1 nM aldosterone rapidly decreased HCO3 absorption by 30%. This inhibition was unaffected by three maneuvers that inhibit basolateral Na+/H+ exchange and was preserved in MTALs from NHE1 knockout mice, ruling out the involvement of NHE1. In contrast, exposure to aldosterone for 15 min caused a 30% decrease in apical Na+/H+ exchange activity over the intracellular pH range from 6.5 to 7.7, due to a decrease in Vmax. Inhibition of HCO3 absorption by aldosterone was not affected by 0.1 mM lumen Zn2+ or 1 mM lumen DIDS, arguing against the involvement of an apical H+ conductance or apical K+-HCO3 cotransport. These results demonstrate that aldosterone inhibits HCO3 absorption in the MTAL through inhibition of apical NHE3, and identify NHE3 as a target for nongenomic regulation by aldosterone. Aldosterone may influence a broad range of epithelial transport functions important for extracellular fluid volume and acid-base homeostasis through direct regulation of this exchanger. thick ascending limb; acid-base transport; epithelial Na+ transport; kidney  相似文献   

8.
To examine theeffect of hyperosmolality on Na+/H+ exchanger(NHE) activity in mesangial cells (MCs), we used apH-sensitive dye,2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM, to measure intracellular pH (pHi) in a single MC from ratglomeruli. All the experiments were performed inCO2/HCO3-free HEPESsolutions. Exposure of MCs to hyperosmotic HEPES solutions (500 mosmol/kgH2O) treated with mannitol caused cellalkalinization. The hyperosmolality-induced cell alkalinization wasinhibited by 100 µM ethylisopropylamiloride, a specific NHEinhibitor, and was dependent on extracellular Na+. Thehyperosmolality shifted the Na+-dependent acid extrusionrate vs. pHi by 0.15-0.3 pH units in thealkaline direction. Removal of extracellular Cl byreplacement with gluconate completely abolished the rate of cellalkalinization induced by hyperosmolality and inhibited the Na+-dependent acid extrusion rate, whereas, under isosmoticconditions, it caused no effect on Na+-dependentpHi recovery rate or Na+-dependent acidextrusion rate. The Cl-dependent cell alkalinizationrate under hyperosmotic conditions was partially inhibited bypretreatment with 5-nitro-2-(3-phenylpropylamino)benzoic acid, DIDS,and colchicine. We conclude: 1) in MCs, hyperosmolality activates NHE to cause cell alkalinization, 2) the acidextrusion rate via NHE is greater under hyperosmotic conditions thanunder isosmotic conditions at a wide range of pHi,3) the NHE activation under hyperosmotic conditions, but notunder isosmotic conditions, requires extracellularCl, and 4) theCl-dependent NHE activation under hyperosmoticconditions partly occurs via Cl channel andmicrotubule-dependent processes.

  相似文献   

9.
Little is known of the functional properties of the mammalian,brain-specific Na+/H+ exchanger isoform 5 (NHE5). Rat NHE5 was stably expressed in NHE-deficient PS120 cells, andits activity was characterized using the fluorescent pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. NHE5was insensitive to ethylisopropyl amiloride. The transport kinetics displayed a simple Michaelis-Menten relationship for extracellular Na+ (apparent KNa = 27 ± 5 mM) and a Hill coefficient near 3 for the intracellularproton concentration with a half-maximal activity at an intracellularpH of 6.93 ± 0.03. NHE5 activity was inhibited by acute exposureto 8-bromo-cAMP or forskolin (which increases intracellular cAMP byactivating adenylate cyclase). The kinase inhibitor H-89 reversed thisinhibition, suggesting that regulation by cAMP involves a proteinkinase A (PKA)-dependent process. In contrast, 8-bromo-cGMP did nothave a significant effect on activity. The protein kinase C (PKC)activator phorbol 12-myristrate 13-acetate inhibited NHE5, and the PKCantagonist chelerythrine chloride blunted this effect. Activity wasalso inhibited by hyperosmotic-induced cell shrinkage but wasunaffected by a hyposmotic challenge. These results demonstrate thatrat brain NHE5 is downregulated by activation of PKA and PKC and bycell shrinkage, important regulators of neuronal cell function.

  相似文献   

10.
Intestinal neutral NaCl absorption, which is made up ofbrush-border (BB)Na+/H+exchange linked to BBCl/HCO3exchange, is up- and downregulated as part of digestion and diarrhealdiseases. Glucocorticoids stimulate ileal NaCl absorption and BBNa+/H+exchange. Intestinal BB contains twoNa+/H+exchanger isoforms, NHE2 and NHE3, but their relative roles in rabbitileal BBNa+/H+exchange has not been determined. A technique to separate the contribution of NHE2 and NHE3 to ileal BBNa+/H+exchange activity was standardized by using an amiloride-related compound, HOE-694. Under basal conditions, both NHE2 and NHE3 contribute ~50% to ilealNa+/H+exchange. Glucocorticoids (methylprednisolone) increase BBNa+/H+exchange (2.5 times) but increase only ileal NHE3 activity (4.1 times),without an effect on NHE2 activity. Thus ileal BBNa+/H+exchange in animals treated with glucocorticoids is 69% via NHE3. Aquantitative Western analysis for NHE3 was developed, using as aninternal standard a fusion protein of the COOH-terminal 85 amino acidsof NHE3 and maltose binding protein. Glucocorticoid treatment increasedthe amount of BB NHE3. The quantitative Western analysis showed thatNHE3 makes up 0.018% of ileal BB protein in control rabbits and0.042% (2.3 times as much) in methylprednisolone-treated rabbits.Methylprednisolone treatment did not alter the amount of ileal BB NHE2protein. NHE3 turnover number was estimated to be 458 cycles/s underbasal conditions and 708 cycles/s in glucocorticoid-treated ileum. Thusmethylprednisolone stimulates ileal BBNa+/H+exchange activity only by an effect on NHE3 and not on NHE2; it does soprimarily by increasing the amount of BB NHE3, although it alsoincreases the NHE3 turnover number.

  相似文献   

11.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

12.
ETB receptor activation leads to activation and phosphorylation of NHE3   总被引:1,自引:0,他引:1  
In OKP cellsexpressing ETB endothelinreceptors, activation ofNa+/H+antiporter activity by endothelin-1 (ET-1) was resistant to low concentrations of ethylisopropyl amiloride, indicating regulation ofNa+/H+exchanger isoform 3 (NHE3). ET-1 increased NHE3 phosphorylation incells expressing ETB receptors butnot in cells expressing ETAreceptors. Receptor specificity was not due to demonstrable differencesin receptor-specific activation of tyrosine phosphorylation pathways orinhibition of adenylyl cyclase. Phosphorylation was associated with adecrease in mobility on SDS-PAGE, which was reversed by treatingimmunoprecipitated NHE3 with alkaline phosphatase. Phosphorylation wasfirst seen at 5 min and was maximal at 15-30 min. Phosphorylationwas maximal with 109 MET-1. Phosphorylation occurred on threonine and serine residues atmultiple sites. In summary, ET-1 induces NHE3 phosphorylation in OKPcells on multiple threonine and serine residues.ETB receptor specificity, timecourse, and concentration dependence are all similar betweenET-1-induced increases in NHE3 activity and phosphorylation, suggestingthat phosphorylation plays a key role in activation.  相似文献   

13.
Putative chemoreceptors in the solitary complex (SC) are sensitive to hypercapnia and oxidative stress. We tested the hypothesis that oxidative stress stimulates SC neurons by a mechanism independent of intracellular pH (pHi). pHi was measured by using ratiometric fluorescence imaging microscopy, utilizing either the pH-sensitive fluorescent dye BCECF or, during whole cell recordings, pyranine in SC neurons in brain stem slices from rat pups. Oxidative stress decreased pHi in 270 of 436 (62%) SC neurons tested. Chloramine-T (CT), N-chlorosuccinimide (NCS), dihydroxyfumaric acid, and H2O2 decreased pHi by 0.19 ± 0.007, 0.20 ± 0.015, 0.15 ± 0.013, and 0.08 ± 0.002 pH unit, respectively. Hypercapnia decreased pHi by 0.26 ± 0.006 pH unit (n = 95). The combination of hypercapnia and CT or NCS had an additive effect on pHi, causing a 0.42 ± 0.03 (n = 21) pH unit acidification. CT slowed pHi recovery mediated by Na+/H+ exchange (NHE) from NH4Cl-induced acidification by 53% (n = 20) in -buffered medium and by 58% (n = 10) in HEPES-buffered medium. CT increased firing rate in 14 of 16 SC neurons, and there was no difference in the firing rate response to CT with or without a corresponding change in pHi. These results indicate that oxidative stress 1) decreases pHi in some SC neurons, 2) together with hypercapnia has an additive effect on pHi, 3) partially inhibits NHE, and 4) directly affects excitability of CO2/H+-chemosensitive SC neurons independently of pHi changes. These findings suggest that oxidative stress acidifies SC neurons in part by inhibiting NHE, and this acidification may contribute ultimately to respiratory control dysfunction. hyperoxic hyperventilation; O2 toxicity; pH regulation; brain stem; reactive oxygen species  相似文献   

14.
Secretin stimulates ductal secretion by activation of cAMP PKA CFTR Cl/HCO3 exchanger in cholangiocytes. We evaluated the expression of 2A-, 2B-, and 2C-adrenergic receptors in cholangiocytes and the effects of the selective 2-adrenergic agonist UK 14,304, on basal and secretin-stimulated ductal secretion. In normal rats, we evaluated the effect of UK 14,304 on bile and bicarbonate secretion. In bile duct-ligated (BDL) rats, we evaluated the effect of UK 14,304 on basal and secretin-stimulated 1) bile and bicarbonate secretion; 2) duct secretion in intrahepatic bile duct units (IBDU) in the absence or presence of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na+/H+ exchanger isoform NHE3; and 3) cAMP levels, PKA activity, Cl efflux, and Cl/HCO3 exchanger activity in purified cholangiocytes. 2-Adrenergic receptors were expressed by all cholangiocytes in normal and BDL liver sections. UK 14,304 did not change bile and bicarbonate secretion of normal rats. In BDL rats, UK 14,304 inhibited secretin-stimulated 1) bile and bicarbonate secretion, 2) expansion of IBDU luminal spaces, and 3) cAMP levels, PKA activity, Cl efflux, and Cl/HCO3 exchanger activity in cholangiocytes. There was decreased lumen size after removal of secretin in IBDU pretreated with UK 14,304. In IBDU pretreated with EIPA, there was no significant decrease in luminal space after removal of secretin in either the absence or presence of UK 14,304. The inhibitory effect of UK 14,304 on ductal secretion is not mediated by the apical cholangiocyte NHE3. 2-Adrenergic receptors play a role in counterregulating enhanced ductal secretion associated with cholangiocyte proliferation in chronic cholestatic liver diseases. bicarbonate secretion; chloride efflux; gastrointestinal hormones; intrahepatic biliary epithelium; protein kinase A  相似文献   

15.
Since thediscovery of the first intracellular Na+/H+exchanger in yeast, Nhx1, multiple homologs have been cloned andcharacterized in plants. Together, studies in these organismsdemonstrate that Nhx1 is located in the prevacuolar/vacuolarcompartment of cells where it sequesters Na+ into thevacuole, regulates intravesicular pH, and contributes to vacuolarbiogenesis. In contrast, the human homolog of Nhx1, Na+/H+ exchanger isoform 6 (NHE6), has beenreported to localize to mitochondria when transiently expressed as afusion with green fluorescent protein. This result warrantsreevaluation because it conflicts with predictions from phylogeneticanalyses. Here we demonstrate that when epitope-tagged NHE6 istransiently expressed in cultured mammalian cells, it does notcolocalize with mitochondrial markers. It also does not colocalize withmarkers of the lysosome, late endosome, trans-Golgi network,or Golgi cisternae. Rather, NHE6 is distributed in recyclingcompartments and transiently appears on the plasma membrane. Theseresults suggest that, like its homologs in yeast and plants, NHE6 is anendosomal Na+/H+ exchanger that may regulateintravesicular pH and volume and contribute to lysosomal biogenesis.

  相似文献   

16.
The response ofH+-ATPase to lethal acid stress isunknown. A mutant strain (called NHE2d) was derived from cultured inner medullary collecting duct cells (mIMCD-3 cells) following three cyclesof lethal acid stress. Cells were grown to confluence on coverslips,loaded with2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, andmonitored for intracellular pH(pHi) recovery from an acid load. The rate of Na+-independentpHi recovery from an acid load inmutant cells was approximately fourfold higher than in parent cells(P < 0.001). TheNa+-independentH+ extrusion was ATP dependent and K+ independent and wascompletely inhibited in the presence of diethylstilbestrol, N, N'-dicyclohexylcarbodiimide,or N-ethylmaleimide. Theseresults indicate that theNa+-independentH+ extrusion in cultured medullarycells is mediated via H+-ATPaseand is upregulated in lethal acidosis. Northern hybridization experiments demonstrated that mRNA levels for the 16- and 31-kDa subunits of H+-ATPase remainedunchanged in mutant cells compared with parent cells. We propose thatlethal acid stress results in increased H+-ATPase activity in innermedullary collecting duct cells. Upregulation ofH+-ATPase could play a protectiverole against cell death in severe intracellular acidosis.

  相似文献   

17.
In isolated sweat glands, bumetanide inhibits sweat secretion. The mRNA encoding bumetanide-sensitive Na+-K+-Cl cotransporter (NKCC) isoform 1 (NKCC1) has been detected in sweat glands; however, the cellular and subcellular protein localization is unknown. Na+/H+ exchanger (NHE) isoform 1 (NHE1) protein has been localized to both the duct and secretory coil of human sweat duct; however, the NHE1 abundance in the duct was not compared with that in the secretory coil. The aim of this study was to test whether mRNA encoding NKCC1, NKCC2, and Na+-coupled acid-base transporters and the corresponding proteins are expressed in rodent sweat glands and, if expressed, to determine the cellular and subcellular localization in rat, mouse, and human eccrine sweat glands. NKCC1 mRNA was demonstrated in rat palmar tissue, including sweat glands, using RT-PCR, whereas NKCC2 mRNA was absent. Also, NHE1 mRNA was demonstrated in rat palmar tissue, whereas NHE2, NHE3, NHE4, electrogenic Na+-HCO3 cotransporter 1 NBCe1, NBCe2, electroneutral Na+-HCO3 cotransporter NBCn1, and Na+-dependent Cl/HCO3 exchanger NCBE mRNA were not detected. The expression of NKCC1 and NHE1 proteins was confirmed in rat palmar skin by immunoblotting, whereas NKCC2, NHE2, and NHE3 proteins were not detected. Immunohistochemistry was performed using sections from rat, mouse, and human palmar tissue. Immunoperoxidase labeling revealed abundant expression of NKCC1 and NHE1 in the basolateral domain of secretory coils of rat, mouse, and human sweat glands and low expression was found in the coiled part of the ducts. In contrast, NKCC1 and NHE1 labeling was absent from rat, mouse, and human epidermis. Immunoelectron microscopy demonstrated abundant NKCC1 and NHE1 labeling of the basolateral plasma membrane of mouse sweat glands, with no labeling of the apical plasma membranes or intracellular structures. The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na+-coupled acid-base transport. bumetanide; eccrine glands; immunohistochemistry; immunoblotting  相似文献   

18.
Infection withhuman cytomegalovirus (HCMV) causes an enlargement (cytomegaly) ofhuman fibroblasts (MRC-5). As a first step toward determining whethersolute uptake, mediated in part by Na+/H+exchange, is responsible for the development of cytomegaly, we studiedthe effects of HCMV infection on intracellular pH(pHi) regulation (nominalCO2/concn = 0) by comparing cytomegalic cells with mock-infected cells.Seventy-two hours after HCMV infection of MRC-5 cells we observed thefollowing changes relative to mock-infected cells: restingpHi is 0.1-0.2 pH unit morealkaline; the intrinsic buffering power of the cytoplasm was reduced by~40-50%; acid-loadingH+-equivalent fluxes were reduced;and there were alterations of Na+/H+exchanger (NHE) properties, including an alkaline shift of the pHi dependence of activity, areduction of the apparent affinity for extracellularNa+, and an increase of theapparent maximum velocity and a large increase in stimulation by ahyperosmotic challenge. These results indicate that HCMV infectionexerts a profound effect on functional properties of the NHE, onacid-loading mechanisms, and on intrinsic cellular buffering power.These effects are consistent with a role for the NHE in the developmentof cytomegaly.

  相似文献   

19.
Malignantgliomas exhibit alkaline intracellular pH (pHi) and acidicextracellular pH (pHe) compared with nontransformedastrocytes, despite increased metabolic H+ production. Theacidic pHe limits the availability ofHCO3, thereby reducing both passiveand dynamic HCO3-dependent buffering.This implies that gliomas are dependent upon dynamic HCO3-independent H+buffering pathways such as the type 1 Na+/H+exchanger (NHE1). In this study, four rapidly proliferating gliomas exhibited significantly more alkaline steady-state pHi(pHi = 7.31-7.48) than normal astrocytes(pHi = 6.98), and increased rates of recovery fromacidification, under nominallyCO2/HCO3-free conditions.Inhibition of NHE1 in the absence ofCO2/HCO3 resulted inpronounced acidification of gliomas, whereas normal astrocytes wereunaffected. When suspended inCO2/HCO3 medium astrocytepHi increased, yet glioma pHi unexpectedlyacidified, suggesting the presence of anHCO3-dependent acid loadingpathway. Nucleotide sequencing of NHE1 cDNA from the gliomasdemonstrated that genetic alterations were not responsible for thisaltered NHE1 function. The data suggest that NHE1 activity issignificantly elevated in gliomas and may provide a useful target forthe development of tumor-selective therapies.

  相似文献   

20.
Acid-base effects on intestinal Na(+) absorption and vesicular trafficking   总被引:2,自引:0,他引:2  
We examined for vesicular traffickingof the Na+/H+ exchanger (NHE) in pH-stimulatedileal and CO2-stimulated colonic Na+absorption. Subapical vesicles in rat distal ileum were quantified bytransmission electron microscopy at ×27,500 magnification. Internalization of ileal apical membranes labeled withFITC-phytohemagglutinin was assessed using confocal microscopy, andpH-stimulated ileal Na+ absorption was measured afterexposure to wortmannin. Apical membrane protein biotinylation of ilealand colonic segments and Western blots of recovered proteins wereperformed. In ileal epithelial cells incubated inHCO/Ringer or HEPES/Ringer solution, the number ofsubapical vesicles, the relative quantity of apical membrane NHEisoforms 2 and 3 (NHE2 and NHE3, respectively), and apical membranefluorescence under the confocal microscope were not affected by pHvalues between 7.1 and 7.6. Wortmannin did not inhibit pH-stimulatedileal Na+ absorption. In colonic epithelial apicalmembranes, NHE3 protein content was greater at aPCO2 value of 70 than 21 mmHg, was internalized when PCO2 was reduced, and was exocytosed whenPCO2 was increased. We conclude that vesicletrafficking plays no part in pH-stimulated ileal Na+absorption but is important in CO2-stimulated colonicNa+ absorption.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号