首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of peripheral blood (>85% CD19+/CD5+ B) lymphocytes, obtained from 44 patients affected by B chronic lymphoid leukemia (B-CLL), showed that surface TNF-related apoptosis inducing ligand (TRAIL) was expressed in all samples and at higher levels with respect to unfractionated lymphocytes and purified CD19+ B cells, obtained from 15 normal blood donors. Of note, in a subset of B-CLL samples, the addition to B-CLL cultures of a TRAIL-R1-Fc chimera, which binds at high affinity to surface TRAIL, significantly decreased the percentage of viable cells with respect to untreated control B-CLL cells, suggesting that surface TRAIL may play an unexpected role in promoting B-CLL cell survival. In spite of the majority of B-CLL lymphocytes expressed variable surface levels of "death receptors" TRAIL-R1 and TRAIL-R2, the addition in culture of recombinant TRAIL increased (>20% vs. controls) the degree of spontaneous apoptosis in only 11/44 of the B-CLL samples, had no effect in 19/44, while it significantly increased leukemic cell survival in 14/44. Taken together, these findings suggest that an aberrant expression of TRAIL might contribute to the pathogenesis of B-CLL by promoting the survival in a subset of B-CLL cells.  相似文献   

2.
TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL.   总被引:40,自引:1,他引:39       下载免费PDF全文
TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.  相似文献   

3.
4.
Deletion of T cells due to apoptosis induction is a regulatory mechanism in the human immune system that may be impaired in autoimmune diseases such as multiple sclerosis (MS). Involvement of the apoptosis-mediating CD95/CD95 ligand system in MS has been demonstrated. Here, we report that (auto)antigen-specific human T cells are not killed in vitro by soluble TNF-related apoptosis-inducing ligand (TRAIL) although expressing death-inducing receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Apoptosis was assessed by caspase activation and DNA fragmentation, receptor expression was detected by RT - PCR and flow cytometry. The (auto)antigen-specific T cells were also resistant to specific TRAIL-R1/TRAIL-R2-directed induction of apoptosis, indicating that coexpression of the truncated TRAIL-R3 and TRAIL-R4 in these T cells is not responsible for the observed resistance. Upon stimulation, levels of death-inducing TRAIL receptors decreased whereas TRAIL was up-regulated on the cell surface. In contrast to CD95, the role of TRAIL receptors in MS might not involve regulation of T cell vulnerability.  相似文献   

5.
Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor-alpha family of cytokines that is known to induce apoptosis upon binding to its death domain-containing receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2. Two additional TRAIL receptors, DcR1/TRAIL-R3 and DcR2/TRAIL-R4, lack functional death domains and act as decoy receptors for TRAIL. In this study, the presence of TRAIL and its receptors was investigated in the rat testis during development. TRAIL and its receptors were immunolocalized to the different testicular cell types. TRAIL and its receptors were also identified in the rat testis in terms of protein and mRNA. Our immunohistochemical studies indicate that TRAIL, DR5/TRAIL-R2, and DcR2-TRAIL-R4 are detected in Leydig cells, whereas ligand and all receptors are localized in germ cells. TRAIL was permanently immunodetected in germ cells from the fetal stage to adulthood, whereas its receptors were immunolocalized exclusively in postmeiotic germ cells. The expression of TRAIL and receptor mRNAs was consistent with the immunodetection of TRAIL and receptor proteins. Indeed, TRAIL ligand mRNA was also identified in the rat testis from the fetal stage to adulthood. The mRNAs of the death receptors, DR4/TRAIL-R1 and DR5/TRAIL-R2, were weakly detected during the perinatal period and increased from the pubertal stage to adulthood. The mRNAs of the decoy receptors, DcR1 and DcR2, were present in the rat testis at all ages studied, but the DcR2/TRAIL-R4 mRNa level was higher from the pubertal period to adulthood. Together, the present findings demonstrate that 1) TRAIL and its receptors are expressed in the testis during normal development, and 2) TRAIL protein is present in the different germ cell types, whereas its receptors were predominantly detected in the postmeiotic germ cells.  相似文献   

6.
The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.  相似文献   

7.
Despite the fact that tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and its receptors (TRAIL-Rs) are expressed in intestinal mucosa, little is known about the biological role of this system in intestinal cell physiology. The expression of surface TRAIL and TRAIL-R1, -R2, -R3, -R4 were examined by flow cytometry in the immortalized human cell line tsFHI under culture conditions promoting growth or growth arrest and expression of differentiated traits. A progressive increase of surface TRAIL expression paralleled tsFHI differentiation, consistently with immunohistochemistry analysis showing an increase of TRAIL immunostaining along the crypt-villus axis in normal jejuneal mucosa. In spite of the presence of TRAIL-R1 and TRAIL-R2 "death receptors," recombinant TRAIL was not cytotoxic for tsFHI cells. Exposure of tsFHI to recombinant TRAIL rather increased/anticipated the expression levels of the cyclin-dependent kinase inhibitors p21 and p27, which mediate the induction of growth arrest and the stabilization of differentiated traits, respectively, as well as of the canonical differentiation marker DPPIV. The differentiation inducing activity of TRAIL was abolished by pre-incubation with a Fc-TRAIL-R2 chimera. On the other hand, TRAIL did not significantly modulate the levels of osteoprotegerin (OPG), CXCL8/IL-8, CXCL9/MIG, and CXCL10/IP10 spontaneously released or induced by inflammatory cytokines. Taken together, these data suggest that TRAIL might act as a paracrine trophic cytokine on intestinal epithelium, promoting intestinal cell differentiation.  相似文献   

8.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells without toxicity to normal cells, but some recombinant versions of TRAIL caused hepatocyte death. We generated fully human monoclonal antibodies (mAbs) that bind specifically to TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2), which mediate apoptosis signal when they ligate with TRAIL, to investigate the contribution of each receptor to induce tumor cell apoptosis and hepatocyte toxicity. All of mAbs to TRAIL-R1 and TRAIL-R2 induced cell death in several cancer cell lines susceptible to TRAIL but not in human umbilical vein endothelial cells in vitro. Both anti-TRAIL-R1 mAbs and anti-TRAIL-R2mAbs also caused cell death in hepatocytes. However, a subset of mAbs to TRAIL-R2, which was characterized by the TRAIL blocking activity, did not show strong hepatocyte toxicity. These results indicate that human normal hepatocytes are susceptible to both TRAIL-R1- and TRAIL-R2-mediated apoptosis signal.Cell Death and Differentiation (2004) 11, 203-207. doi:10.1038/sj.cdd.4401331 Published online 24 October 2003  相似文献   

9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor but not normal cells, thus providing therapeutic possibilities for human cancers. However, it is not fully clear how widespread TRAIL receptors are, or how TRAIL signaling is modulated in normal cells. We characterized cell surface expression of TRAIL receptors in normal healthy donor peripheral blood and report that each of the TRAIL receptors are characteristically expressed on restricted cell populations. TRAIL-R1 is distinctively expressed on B-lymphocytes, TRAIL-R2 on monocytes, TRAIL-R3 on neutrophils and most impressively, CD8+ lymphocytes and NKT lymphocytes but not CD4+ lymphocytes express TRAIL-R4.  相似文献   

10.
Functional analysis of TRAIL receptors using monoclonal antibodies   总被引:29,自引:0,他引:29  
mAbs were generated against the extracellular domain of the four known TNF-related apoptosis-inducing ligand (TRAIL) receptors and tested on a panel of human melanoma cell lines. The specificity of the mAb permitted a precise evaluation of the TRAIL receptors that induce apoptosis (TRAIL-R1 and -R2) compared with the TRAIL receptors that potentially regulate TRAIL-mediated apoptosis (TRAIL-R3 and -R4). Immobilized anti-TRAIL-R1 or -R2 mAbs were cytotoxic to TRAIL-sensitive tumor cells, whereas tumor cells resistant to recombinant TRAIL were also resistant to these mAbs and only became sensitive when cultured with actinomycin D. The anti-TRAIL-R1 and -R2 mAb-induced death was characterized by the activation of intracellular caspases, which could be blocked by carbobenzyloxy-Val-Ala-Asp (OMe) fluoromethyl ketone (zVAD-fmk) and carbobenzyloxy-Ile-Glu(OMe)-Thr-Asp (OMe) fluoromethyl ketone (zIETD-fmk). When used in solution, one of the anti-TRAIL-R2 mAbs was capable of blocking leucine zipper-human TRAIL binding to TRAIL-R2-expressing cells and prevented TRAIL-induced death of these cells, whereas two of the anti-TRAIL-R1 mAbs could inhibit leucine zipper-human TRAIL binding to TRAIL-R1:Fc. Furthermore, use of the blocking anti-TRAIL-R2 mAb allowed us to demonstrate that the signals transduced through either TRAIL-R1 or TRAIL-R2 were necessary and sufficient to mediate cell death. In contrast, the expression of TRAIL-R3 or TRAIL-R4 did not appear to be a significant factor in determining the resistance or sensitivity of these tumor target cells to the effects of TRAIL.  相似文献   

11.
In the present report, we have investigated TRAIL/APO2 ligand (APO2L) expression, regulation, and function in human lung carcinoma tumor-infiltrating lymphocytes. Using a panel of non-small cell lung carcinoma cell lines, we first showed that most of them expressed TRAIL-R1/DR4, TRAIL-R2/DR5, but not TRAIL-R3/DcR1 and TRAIL-R4/DcR2, and were susceptible to APO2L/TRAIL-induced cell death. Two APO2L/TRAIL-sensitive tumor cell lines (MHC class I(+)/II(+) or I(+)/II(-)) were selected and specific CD4(+) HLA-DR- or CD8(+) HLA-A2-restricted CTL clones were respectively isolated from autologous tumor-infiltrating lymphocytes. Interestingly, although the established T cell clones did not constitutively express detectable levels of APO2L/TRAIL, engagement of their TCR via activation with specific tumor cells selectively induced profound APO2L/TRAIL expression on the CD4(+), but not on the CD8(+), CTL clones. Furthermore, as opposed to the CD8(+) CTL clone which mainly used granule exocytosis pathway, the CD4(+) CTL clone lysed the specific target via both perforin/granzymes and APO2L/TRAIL-mediated mechanisms. The latter cytotoxicity correlated with APO2L/TRAIL expression and was significantly enhanced in the presence of IFN-alpha. More interestingly, in vivo studies performed in SCID/nonobese diabetic mice transplanted with autologous tumor and transferred with the specific CD4(+) CTL clone in combination with IFN-alpha resulted in an important APO2L/TRAIL-mediated tumor growth inhibition, which was prohibited by soluble TRAIL-R2. Our findings suggest that APO2L/TRAIL, specifically induced by autologous tumor and up-regulated by IFN-alpha, may be a key mediator of tumor-specific CD4(+) CTL-mediated cell death and point to a potent role of this T cell subset in tumor growth control.  相似文献   

12.
Formation of the pro-apoptotic death-inducing signaling complex (DISC) can be initiated in cancer cells via binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to its two pro-apoptotic receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Primary components of the DISC are trimerized TRAIL-R1/-R2, FADD, caspase 8 and caspase 10. The anti-apoptotic protein FLIP can also be recruited to the DISC to replace caspase 8 and form an inactive complex. Caspase 8/10 processing at the DISC triggers the caspase cascade, which eventually leads to apoptotic cell death. Besides TRAIL, TRAIL-R1- or TRAIL-R2-selective variants of TRAIL and agonistic antibodies have been designed. These ligands are of interest as anti-cancer agents since they selectively kill tumor cells. To increase tumor sensitivity to TRAIL death receptor-mediated apoptosis and to overcome drug resistance, TRAIL receptor ligands have already been combined with various therapies in preclinical models. In this review, we discuss factors influencing the initial steps of the TRAIL apoptosis signaling pathway, focusing on mechanisms modulating DISC assembly and caspase activation at the DISC. These insights will direct rational design of drug combinations with TRAIL receptor ligands to maximize DISC signaling.  相似文献   

13.
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis. In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2. The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells. Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in "decoy" receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cells.  相似文献   

14.
TRAIL signalling: decisions between life and death   总被引:6,自引:0,他引:6  
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.  相似文献   

15.
16.
Acceleration of human neutrophil apoptosis by TRAIL   总被引:15,自引:0,他引:15  
Neutrophil granulocytes have a short lifespan, with their survival limited by a constitutive program of apoptosis. Acceleration of neutrophil apoptosis following ligation of the Fas death receptor is well-documented and TNF-alpha also has a transient proapoptotic effect. We have studied the role of the death receptor ligand TRAIL in human neutrophils. We identified the presence of mRNAs for TRAIL, TRAIL-R2, and TRAIL-R3, and cell surface expression of TRAIL-R2 and -R3 in neutrophil populations. Neutrophil apoptosis is specifically accelerated by exposure to a leucine zipper-tagged form of TRAIL, which mimics cell surface TRAIL. Using blocking Abs to TRAIL receptors, specifically TRAIL-R2, and a TRAIL-R1:FcR fusion protein, we have excluded a role for TRAIL in regulating constitutive neutrophil apoptosis. No additional proapoptotic effect of leucine zipper TRAIL was identified following TRAIL treatment of neutrophils in the presence of gliotoxin, an inhibitor of NF-kappaB, suggesting TRAIL does not activate NF-kappaB in human neutrophils. TRAIL treatment of human neutrophils did not induce a chemotactic response. The susceptibility of neutrophils to TRAIL-mediated apoptosis suggests a role for TRAIL in the regulation of inflammation and may provide a mechanism for clearance of neutrophils from sites of inflammation.  相似文献   

17.
On the TRAIL to apoptosis   总被引:12,自引:0,他引:12  
  相似文献   

18.
Tissue distribution of the death ligand TRAIL and its receptors.   总被引:14,自引:0,他引:14  
Recombinant human (rh) TNF-related apoptosis-inducing ligand (TRAIL) harbors potential as an anticancer agent. RhTRAIL induces apoptosis via the TRAIL receptors TRAIL-R1 and TRAIL-R2 in tumors and is non-toxic to nonhuman primates. Because limited data are available about TRAIL receptor distribution, we performed an immunohistochemical (IHC) analysis of the expression of TRAIL-R1, TRAIL-R2, the anti-apoptotic TRAIL receptor TRAIL-R3, and TRAIL in normal human and chimpanzee tissues. In humans, hepatocytes stained positive for TRAIL and TRAIL receptors and bile duct epithelium for TRAIL, TRAIL-R1, and TRAIL-R3. In brains, neurons expressed TRAIL-R1, TRAIL-R2, TRAIL-R3 but no TRAIL. In kidneys, TRAIL-R3 was negative, tubuli contorti expressed TRAIL-R1, TRAIL-R2, and TRAIL, and cells in Henle's loop expressed only TRAIL-R2. Heart myocytes showed positivity for all proteins studied. In colon, TRAIL-R1, TRAIL-R2, and TRAIL were present. Germ and Leydig cells were positive for all proteins studied. Endothelium in liver, heart, kidney, and testis lacked TRAIL-R1 and TRAIL-R2. In alveolar septa and bronchial epithelium TRAIL-R2 was expressed, brain vascular endothelium expressed TRAIL-R2 and TRAIL-R3, and in heart vascular endothelium only TRAIL-R3 was present. Only a few differences were observed between human and chimpanzee liver, brain, and kidney. In contrast to human, chimpanzee bile duct epithelium lacked TRAIL, TRAIL-R1, and TRAIL-R3, lung and colon showed no TRAIL or its receptors, TRAIL-R3 was absent in germ and Leydig cells, and vascular endothelium showed only TRAIL-R2 expression in the brain. In conclusion, comparable expression of TRAIL and TRAIL receptors was observed in human and chimpanzee tissues. Lack of liver toxicity in chimpanzees after rhTRAIL administration despite TRAIL-R1 and TRAIL-R2 expression is reassuring for rhTRAIL application in humans.  相似文献   

19.
TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) is a typical member of the TNF ligand family that induces apoptosis by activating the death receptors TRAIL-R1 and TRAIL-R2. TRAIL has attracted great attention in recent years as a promising anti cancer reagent because recombinant soluble TRAIL derivatives induce apoptosis in a broad range of tumor cells but not or only rarely in non-transformed cells. In this review we will address the putative role of TRAIL in cancer treatment in the light of the emerging importance of TRAIL in tumor surveillance and discuss the molecular basis of the cooperation of TRAIL and chemotherapeutic drugs. In particular, we debate controversial data in the literature concerning the cytotoxicity of different TRAIL derivatives on primary human cells.  相似文献   

20.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号