首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Matrix metalloproteinases (MMPs) have been extensively studied because of their functional attributes in development and diseases. However, relatively few in vivo functional studies have been reported on the roles of MMPs in postembryonic organ development. Amphibian metamorphosis is a unique model for studying MMP function during vertebrate development because of its dependence on thyroid hormone (T3) and the ability to easily manipulate this process with exogenous T3. The MMP stromelysin-3 (ST3) is induced by T3, and its expression correlates with cell death during metamorphosis. We have previously shown that ST3 is both necessary and sufficient for larval epithelial cell death in the remodeling intestine. To investigate the roles of ST3 in other organs and especially on different cell types, we have analyzed the effect of transgenic overexpression of ST3 in the tail of premetamorphic tadpoles. We report for the first time that ST3 expression, in the absence of T3, caused significant muscle cell death in the tail of premetamorphic transgenic tadpoles. On the other hand, only relatively low levels of epidermal cell death were induced by precocious ST3 expression in the tail, contrasting what takes place during natural and T3-induced metamorphosis when ST3 expression is high. This cell type-specific apoptotic response to ST3 in the tail suggests distinct mechanisms regulating cell death in different tissues. Furthermore, our analyses of laminin receptor, an in vivo substrate of ST3 in the intestine, suggest that laminin receptor cleavage may be an underlying mechanism for the cell type-specific effects of ST3.The extracellular matrix (ECM),3 the dynamic milieu of the cell microenvironment, plays a critical role in dictating the fate of the cell. The cross-talk between the cell and ECM and the timely catabolism of the ECM are crucial for tissue remodeling during development (1). Matrix metalloproteinases (MMPs), extrinsic proteolytic regulators of the ECM, mediate this process to a large extent. MMPs are a large family of Zn2+-dependent endopeptidases potentially capable of cleaving the extracellular as well as nonextracellular proteins (29). The MMP superfamily includes collagenases, gelatinases, stromelysins, and membrane-type MMPs based on substrate specificity and domain organization (24). MMPs have been implicated to influence a wide range of physiological and pathological processes (1013). The roles of MMPs appear to be very complex. For example, MMPs have been suggested to play roles in both tumor promotion and suppression (1319). Unfortunately, relatively few functional studies have been carried out in vivo, especially in relation to the mechanisms involved during vertebrate development.Amphibian metamorphosis presents a fascinating experimental model to study MMP function during postembryonic development. A unique and salient feature of the metamorphic process is the absolute dependence on the signaling of thyroid hormone (2023). This makes it possible to prevent metamorphosis by simply inhibiting the synthesis of endogenous T3 or to induce precocious metamorphosis by merely adding physiological levels of T3 in the rearing water of premetamorphic tadpoles. Gene expression screens have identified the MMP stromelysin-3 (ST3) as a direct T3 response gene (2427). Expression studies have revealed a distinct spatial and temporal ST3 expression profile in correlation with metamorphic event, especially cell death (25, 2831). Organ culture studies on intestinal remodeling have directly substantiated an essential role of ST3 in larval epithelial cell death and ECM remodeling (32). Furthermore, precocious expression of ST3 alone in premetamorphic tadpoles through transgenesis is sufficient to induce ECM remodeling and larval epithelial apoptosis in the tadpole intestine (33). Thus, ST3 appears to be necessary and sufficient for intestinal epithelial cell death during metamorphosis.ST3 was first isolated as a breast cancer-associated gene (34), and unlike most other MMPs, ST3 is secreted as an active protease through a furin-dependent intracellular activation mechanism (35). Like many other MMPs, ST3 is expressed in a number of pathological processes, including most human carcinomas (11, 3640), as well as in many developmental processes in mammals (10, 34, 4143), although the physiological and pathological roles of ST3 in vivo are largely unknown in mammals. Interestingly, compared with other MMPs, ST3 has only weak activities toward ECM proteins in vitro but stronger activities against non-ECM proteins like α1 proteinase inhibitor and IGFBP-1 (4446). Although ST3 may cleave ECM proteins strongly in the in vivo environment, these findings suggest that the cleavage of non-ECM proteins is likely important for its biological roles. Consistently, we have recently identified a cell surface receptor, laminin receptor (LR) as an in vivo substrate of ST3 in the tadpole intestine during metamorphosis (4749). Analyses of LR expression and cleavage suggest that LR cleavage by ST3 is likely an important mechanism by which ST3 regulates the interaction between the larval epithelial cells and the ECM to induce cell death during intestinal remodeling (47, 48).Here, to investigate the role of ST3 in the apoptosis in other tissues during metamorphosis and whether LR cleavage serves as a mechanism for ST3 to regulate the fate of different cell types, we have analyzed the effects of precocious expression of ST3 in premetamorphic tadpole tail. The tail offers an opportunity to examine the effects of ST3 on different cell types. The epidermis, the fast and slow muscles, and the connective tissue underlying the epidermis in the myotendinous junctions and surrounding the notochord constitute the major tissue types in tail (50). Even though death is the destiny of all these cell types, it is not clear whether they all die through similar or different mechanisms. Microscopic and histochemical analyses have shown that at least the muscle and epidermal cells undergo T3-dependent apoptosis during metamorphosis (23, 29, 51, 52). To study whether ST3 regulates apoptosis of these two cell types, we have made use of the transgenic animals that express a transgenic ST3 under the control of a heat shock-inducible promoter (33). We show that whereas extensive apoptosis is present in both the epidermis and muscles during natural as well as T3-induced metamorphosis, transgenic expression of ST3 induces cell death predominantly in the muscles. Furthermore, we show that LR is expressed in the epidermis and connective tissue but not in muscles of the tadpole tail. More importantly, LR cleavage products are present in the tail during natural metamorphosis but not in transgenic tadpoles overexpressing ST3. These results suggest that ST3 has distinct effects on the epidermis and muscles in the tail, possibly because of the tissue-specific expression and function of LR.  相似文献   

4.
5.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

6.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

7.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

8.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

9.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

10.
We have previously reported that growth factor receptor-bound protein-7 (Grb7), an Src-homology 2 (SH2)-containing adaptor protein, enables interaction with focal adhesion kinase (FAK) to regulate cell migration in response to integrin activation. To further elucidate the signaling events mediated by FAK·Grb7 complexes in promoting cell migration and other cellular functions, we firstly examined the phos pho ryl a ted tyrosine site(s) of Grb7 by FAK using an in vivo mutagenesis. We found that FAK was capable of phos pho rylating at least 2 of 12 tyrosine residues within Grb7, Tyr-188 and Tyr-338. Moreover, mutations converting the identified Tyr to Phe inhibited integrin-dependent cell migration as well as impaired cell proliferation but not survival compared with the wild-type control. Interestingly, the above inhibitory effects caused by the tyrosine phos pho ryl a tion-deficient mutants are probably attributed to their down-regulation of phospho-Tyr-397 of FAK, thereby implying a mechanism by competing with wild-type Grb7 for binding to FAK. Consequently, these tyrosine phos pho ryl a tion-deficient mutants evidently altered the phospho-Tyr-118 of paxillin and phos pho ryl a tion of ERK1/2 but less on phospho-Ser-473 of AKT, implying their involvement in the FAK·Grb7-mediated cellular functions. Additionally, we also illustrated that the formation of FAK·Grb7 complexes and Grb7 phos pho ryl a tion by FAK in an integrin-dependent manner were essential for cell migration, proliferation and anchorage-independent growth in A431 epidermal carcinoma cells, indicating the importance of FAK·Grb7 complexes in tumorigenesis. Our data provide a better understanding on the signal transduction event for FAK·Grb7-mediated cellular functions as well as to shed light on a potential therapeutic in cancers.Growth factor receptor bound protein-7 (Grb7)2 is initially identified as a SH2 domain-containing adaptor protein bound to the activated EGF receptor (1). Grb7 is composed of an N-terminal proline-rich region, following a putative RA (Ras-associating) domain and a central PH (pleckstrin homology) domain and a BPS motif (between PH and SH2 domains), and a C-terminal SH2 domain (26). Despite the lack of enzymatic activity, the presence of multiple protein-protein interaction domains allows Grb7 family adaptor proteins to participate in versatile signal transduction pathways and, therefore, to regulate many cellular functions (46). A number of signaling molecules has been reported to interact with these featured domains, although most of the identified Grb7 binding partners are mediated through its SH2 domain. For example, the SH2 domain of Grb7 has been demonstrated to be capable of binding to the phospho-tyrosine sites of EGF receptor (1), ErbB2 (7), ErbB3 and ErbB4 (8), Ret (9), platelet-derived growth factor receptor (10), insulin receptor (11), SHPTP2 (12), Tek/Tie2 (13), caveolin (14), c-Kit (15), EphB1 (16), G6f immunoreceptor protein (17), Rnd1 (18), Shc (7), FAK (19), and so on. The proceeding α-helix of the PH domain of Grb7 is the calmodulin-binding domain responsible for recruiting Grb7 to plasma membrane in a Ca2+-dependent manner (20), and the association between the PH domain of Grb7 and phosphoinositides is required for the phosphorylation by FAK (21). Two additional proteins, NIK (nuclear factor κB-inducing kinase) and FHL2 (four and half lim domains isoform 2), in association with the GM region (Grb and Mig homology region) of Grb7 are also reported, although the physiological functions for these interactions remain unknown (22, 23). Recently, other novel roles in translational controls and stress responses through the N terminus of Grb7 are implicated for the findings of Grb7 interacting with the 5′-untranslated region of capped targeted KOR (kappa opioid receptor) mRNA and the Hu antigen R of stress granules in an FAK-mediated phosphorylation manner (24, 25).Unlike its member proteins Grb10 and Grb14, the role of Grb7 in cell migration is unambiguous and well documented. This is supported by a series of studies. Firstly, Grb7 family members share a significantly conserved molecular architecture with the Caenorhabditis elegans Mig-10 protein, which is involved in neuronal cell migration during embryonic development (4, 5, 26), suggesting that Grb7 may play a role in cell migration. Moreover, Grb7 is often co-amplified with Her2/ErbB2 in certain human cancers and tumor cell lines (7, 27, 28), and its overexpression resulted in invasive and metastatic consequences of various cancers and tumor cells (23, 2933). On the contrary, knocking down Grb7 by RNA interference conferred to an inhibitory outcome of the breast cancer motility (34). Furthermore, interaction of Grb7 with autophosphorylated FAK at Tyr-397 could promote integrin-mediated cell migration in NIH 3T3 and CHO cells, whereas overexpression of its SH2 domain, an dominant negative mutant of Grb7, inhibited cell migration (19, 35). Recruitment and phosphorylation of Grb7 by EphB1 receptors enhanced cell migration in an ephrin-dependent manner (16). Recently, G7–18NATE, a selective Grb7-SH2 domain affinity cyclic peptide, was demonstrated to efficiently block cell migration of tumor cells (32, 36). In addition to cell migration, Grb7 has been shown to play a role in a variety of physiological and pathological events, for instance, kidney development (37), tumorigenesis (7, 14, 3841), angiogenic activity (20), proliferation (34, 42, 43), anti-apoptosis (44), gene expression regulation (24), Silver-Russell syndrome (45), rheumatoid arthritis (46), atopic dermatitis (47), and T-cell activation (17, 48). Nevertheless, it remains largely unknown regarding the downstream signaling events of Grb7-mediated various functions. In particular, given the role of Grb7 as an adaptor molecule and its SH2 domain mainly interacting with upstream regulators, it will be interesting to identify potential downstream effectors through interacting with the functional GM region or N-terminal proline-rich region.In this report, we identified two tyrosine phosphorylated sites of Grb7 by FAK and deciphered the signaling targets downstream through these phosphorylated tyrosine sites to regulate various cellular functions such as cell migration, proliferation, and survival. In addition, our study sheds light on tyrosine phosphorylation of Grb7 by FAK involved in tumorigenesis.  相似文献   

11.
During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP1) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration.The quality of bone tissue is determined by the balanced action of the anabolic bone cells, the osteoblasts, and their catabolic counterparts, the osteoclasts. This process of bone remodeling occurs throughout life and can be influenced by a wide variety of molecules, having ultimately an impact on the quality of bone (1, 2). Activins and inhibins are members of the TGF-β superfamily with predominant antagonistic effects in their classically known target tissues, such as in gonadotropin producing cells in the pituitary and their role in reproduction (3, 4). Like other TGF-β member, activins elicit biological responses by binding to type I and II serine/threonine kinase receptors at the cell surface. Upon ligand binding, signaling is further transduced in the cytoplasm by phosphorylated Smad protein complexes that once in the nucleus regulate gene expression. This signaling pathway is highly complex because of crosstalk between different ligands (Activins, BMPs, TGF-β) binding to multiple serine/threonine kinase receptors that activate different Smad proteins signaling to the nucleus. Activin is known to signal using type II receptors ACVR2A or ACVR2B and the type I receptor ACVRIB (shared with BMPs) activating Smad2 and 3 proteins (shared with TGF-β). Inhibins exert their inhibitory effects on activin by competitive binding to the activin receptors in the presence of betaglycan. This signaling regulates a wide array of biological activities from cell proliferation, differentiation to tumor development and endocrine signaling (5, 6) in many cell lineages like hematopoietic (7, 8) and monocyte/macrophage (9, 10). Several consequences of these reproductive hormones, especially those of activin A, are also described in relation to bone metabolism. Activin A is present in bone tissue (11, 12) affecting both osteoclasts and osteoblasts. While having a consistent pro-osteoclastogenic effect (9, 13), the activin A impact on osteoblast differentiation is more controversial (see (14) for review) Several reports support a stimulatory effect of activin A on osteoblast differentiation and mineralization in vitro and in vivo (9, 15, 16). On the other hand, two different studies, using rat and human bone formation models, have demonstrated that activin A treatment has a coherent inhibitory influence on osteogenesis leading to significant reduction of the mineralization capacity (11, 17). These opposing effects of activin A on osteoblastogenesis may simply reflect species differences, however, it may be also driven by heterogeneity of the used cell model or the stage of osteoblast differentiation (14). Nevertheless, a negative role of activin A in bone formation is also supported by other in vivo studies in mice and primates in which blockage of activin signaling resulted in increased bone mass (18, 19). Moreover, transgenic mice overexpressing human inhibin A showed increased bone formation (20).The extracellular compartment is crucial for bone because it determines most of the bone quality properties (21, 22), including its strength, stability, and integrity. Interestingly, a mature extracellular matrix (ECM) is characterized by the capacity to mineralize even in the absence of further osteoblast activity (11, 23). This biomineralization process is complex and not fully elucidated but it is thought to be started within MVs (24). Osteoblasts in bone and other cells in mineralization competent tissues, such as cartilage (25), tendon (26), teeth (27), and calcifying vasculature (28) produce and release from their plasma membrane these vesicles with diameters ranging between 50 and 200 nm. It is inside these membrane-enclosed particles that first crystals of mineral are formed and grow, before the vesicle membrane is permeated and the mineral crystallization advances into the ECM (29, 30). In this context, proteins that can mobilize calcium and inorganic phosphate (Pi), the backbone of the hydroxyapatite crystals present in bone, are of utmost importance. Pi donor proteins found in MVs include alkaline phosphatase (ALP) and inorganic pyrophosphatases (31) whereas the annexin family of proteins is postulated to be crucial for calcium influx into the vesicles (3234).In this study we investigated the inhibitory effect of activin A on human mesenchymal stem cells (hMSC) derived osteoblast differentiation and mineralization. We have previously shown that in human osteoblast cultures activin A influences the expression of many ECM genes altering ECM maturity (11). Thus, we focused our analysis on extracellular environment changes, namely the ECM and matrix vesicles (MVs). The characterization of these compartments was done using the state-of-the-art quantitative proteomics tools including SILAC metabolic labeling and mass spectrometry. Furthermore, the importance of ECM composition for osteoblast differentiation was also determined.  相似文献   

12.
Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function, and one of the best examples of endogenous repair mechanisms involves skeletal muscle. Although the molecular mechanisms that regulate the differentiation of satellite cells and myoblasts toward myofibers are not fully understood, cell surface proteins that sense and respond to their environment play an important role. The cell surface capturing technology was used here to uncover the cell surface N-linked glycoprotein subproteome of myoblasts and to identify potential markers of myoblast differentiation. 128 bona fide cell surface-exposed N-linked glycoproteins, including 117 transmembrane, four glycosylphosphatidylinositol-anchored, five extracellular matrix, and two membrane-associated proteins were identified from mouse C2C12 myoblasts. The data set revealed 36 cluster of differentiation-annotated proteins and confirmed the occupancy for 235 N-linked glycosylation sites. The identification of the N-glycosylation sites on the extracellular domain of the proteins allowed for the determination of the orientation of the identified proteins within the plasma membrane. One glycoprotein transmembrane orientation was found to be inconsistent with Swiss-Prot annotations, whereas ambiguous annotations for 14 other proteins were resolved. Several of the identified N-linked glycoproteins, including aquaporin-1 and β-sarcoglycan, were found in validation experiments to change in overall abundance as the myoblasts differentiate toward myotubes. Therefore, the strategy and data presented shed new light on the complexity of the myoblast cell surface subproteome and reveal new targets for the clinically important characterization of cell intermediates during myoblast differentiation into myotubes.Endogenous regeneration and repair mechanisms are responsible for replacing dead and damaged cells to maintain or enhance tissue and organ function. One of the best examples of endogenous repair mechanisms involves skeletal muscle, which has innate regenerative capacity (for reviews, see Refs. 14). Skeletal muscle repair begins with satellite cells, a heterogeneous population of mitotically quiescent cells located in the basal lamina that surrounds adult skeletal myofibers (5, 6), that, when activated, rapidly proliferate (7). The progeny of activated satellite cells, known as myogenic precursor cells or myoblasts, undergo several rounds of division prior to withdrawal from the cell cycle. This is followed by fusion to form terminally differentiated multinucleated myotubes and skeletal myofibers (7, 8). These cells effectively repair or replace damaged cells or contribute to an increase in skeletal muscle mass.The molecular mechanisms that regulate differentiation of satellite cells and myoblasts toward myofibers are not fully understood, although it is known that the cell surface proteome plays an important biological role in skeletal muscle differentiation. Examples include how cell surface proteins modulate myoblast elongation, orientation, and fusion (for a review, see Ref. 8). The organization and fusion of myoblasts is mediated, in part, by cadherins (for reviews, see Refs. 9 and 10), which enhance skeletal muscle differentiation and are implicated in myoblast fusion (11). Neogenin, another cell surface protein, is also a likely regulator of myotube formation via the netrin ligand signal transduction pathway (12, 13), and the family of sphingosine 1-phosphate receptors (Edg receptors) are known key signal transduction molecules involved in regulating myogenic differentiation (1417). Given the important role of these proteins, identifying and characterizing the cell surface proteins present on myoblasts in a more comprehensive approach could provide insights into the molecular mechanisms involved in skeletal muscle development and repair. The identification of naturally occurring cell surface proteins (i.e. markers) could also foster the enrichment and/or characterization of cell intermediates during differentiation that could be useful therapeutically.Although it is possible to use techniques such as flow cytometry, antibody arrays, and microscopy to probe for known proteins on the cell surface in discrete populations, these methods rely on a priori knowledge of the proteins present on the cell surface and the availability/specificity of an antibody. Proteomics approaches coupled with mass spectrometry offer an alternative approach that is antibody-independent and allows for the de novo discovery of proteins on the surface. One approach, which was used in the current study, exploits the fact that a majority of the cell surface proteins are glycosylated (18). The method uses hydrazide chemistry (19) to immobilize and enrich for glycoproteins/glycopeptides, and previous studies using this chemistry have successfully identified soluble glycoproteins (2024) as well as cell surface glycoproteins (2528). A recently optimized hydrazide chemistry strategy by Wollscheid et al. (29) termed cell surface capturing (CSC)1 technology, reports the ability to identify cell surface (plasma membrane) proteins specifically with little (<15%) contamination from non-cell surface proteins. The specificity stems from the fact that the oligosaccharide structure is labeled using membrane-impermeable reagents while the cells are intact rather than after cell lysis. Consequently, only extracellular oligosaccharides are labeled and subsequently captured. Utilizing information regarding the glycosylation site then allows for a rapid elimination of nonspecifically captured proteins (i.e. non-cell surface proteins) during the data analysis process, a feature that makes this approach unique to methods where no label or tag is used. Additionally, the CSC technology provides information about glycosylation site occupancy (i.e. whether a potential N-linked glycosylation site is actually glycosylated), which is important for determining the protein orientation within the membrane and, therefore, antigen selection and antibody design.To uncover information about the cell surface of myoblasts and to identify potential markers of myoblast differentiation, we used the CSC technology on the mouse myoblast C2C12 cell line model system (30, 31). This adherent cell line derived from satellite cells has routinely been used as a model for skeletal muscle development (e.g. Refs. 1, 32, and 33), skeletal muscle differentiation (e.g. Refs. 3436), and studying muscular dystrophy (e.g. Refs. 3739). Additionally, these cells have been used in cell-based therapies (e.g. Refs. 4042). Using the CSC technology, 128 cell surface N-linked glycoproteins were identified, including several that were found to change in overall abundance as the myoblasts differentiate toward myotubes. The current data also confirmed the occupancy of 235 N-linked glycosites of which 226 were previously unconfirmed. The new information provided by the current study is expected to facilitate the development of useful tools for studying the differentiation of myoblasts toward myotubes.  相似文献   

13.
14.
15.
16.
17.
Transglutaminase type 2 (TG2) is both a protein cross-linking enzyme and a cell adhesion molecule with an elusive unconventional secretion pathway. In normal conditions, TG2-mediated modification of the extracellular matrix modulates cell motility, proliferation and tissue repair, but under continuous cell insult, higher expression and elevated extracellular trafficking of TG2 contribute to the pathogenesis of tissue scarring. In search of TG2 ligands that could contribute to its regulation, we characterized the affinity of TG2 for heparan sulfate (HS) and heparin, an analogue of the chains of HS proteoglycans (HSPGs). By using heparin/HS solid-binding assays and surface plasmon resonance we showed that purified TG2 has high affinity for heparin/HS, comparable to that for fibronectin, and that cell-surface TG2 interacts with heparin/HS. We demonstrated that cell-surface TG2 directly associates with the HS chains of syndecan-4 without the mediation of fibronectin, which has affinity for both syndecan-4 and TG2. Functional inhibition of the cell-surface HS chains of wild-type and syndecan-4-null fibroblasts revealed that the extracellular cross-linking activity of TG2 depends on the HS of HSPG and that syndecan-4 plays a major but not exclusive role. We found that heparin binding did not alter TG2 activity per se. Conversely, fibroblasts deprived of syndecan-4 were unable to effectively externalize TG2, resulting in its cytosolic accumulation. We propose that the membrane trafficking of TG2, and hence its extracellular activity, is linked to TG2 binding to cell-surface HSPG.Transglutaminase type 2 (TG2,2 EC 2.3.2.13) is the most widespread member of a large family of enzymes that catalyze the Ca2+-dependent post-translational modification of proteins leading to intra- or intermolecular Nϵ(γ-glutamyl)lysine bonds (1, 2). Unlike other family members, TG2 is uniquely exported through a yet to be elucidated non-conventional pathway. Once secreted, TG2 finds in the extracellular compartment the ideal conditions of high Ca2+ and low GTP concentration for the activation of its intrinsic transamidation activity (cross-linking) (2, 3). Intracellularly, GTP binding suppresses the Ca2+-dependent cross-linking activity and determines the additional GTPase activity of TG2 (4, 5), which is responsible for signal transduction (6). Once externalized, TG2 remains tightly bound to the cell surface and to the extracellular matrix (ECM) (7, 8), and it is rarely found free in the conditioned medium, unless overexpressed by cell transfection (9).Extracellular TG2 activity is involved in the cross-linking of the ECM, conferring resistance to matrix metalloproteinase and promoting cell-matrix interactions via cross-linking of fibronectin (FN) and collagen (1, 7, 11, 12). TG2 has an additional non-enzymatic role in the matrix as an integrin-β1 co-receptor (8) by supporting RGD-independent cell adhesion to FN (8, 13, 14).Extracellular cross-linking and TG2-mediated adhesion facilitate the repair process in many tissue compartments (1, 2, 15, 16). On the other hand, uncontrolled cross-linking as a consequence of chronic cell insult and secretion of TG2 has been implicated in a number of pathological conditions, including kidney, liver, and pulmonary fibrosis (1720).Understanding how TG2 is exported and targeted to the cell surface is critical for limiting its cellular secretion and extracellular action. Although a key trigger for TG2 export is cell stress (2, 21, 22), TG2 is not unspecifically released, because extracellular trafficking occurs in the absence of leakage of intracellular components and cells remain viable (23). We know that TG2 requires the tertiary structure of its active site region to be secreted (9); moreover, TG2 is acetylated on the N terminus (24), a process reported to affect membrane targeting of non-conventional secreted proteins (25). Two main binding partners for TG2, FN and integrin-β1, have both been attributed a possible role in the transport of TG2 to the cell surface (8, 26). FN was shown to co-localize with TG2 once released (26), and integrin-β1 to co-associate with TG2 in cells induced to differentiate (8).TG2 has also long been known to have some affinity for heparin (27, 28), a highly sulfated analogue of heparan sulfate (HS) glycosaminoglycan chains, which are abundant constituents of the cell surface/ECM. HS chains are linear polysaccharides consisting of alternating N-acetylated or N-sulfated glucosamine units (GlcNAc or GlcNS), and uronic acids (glucuronic acid GlcA or iduronic acid IdoA residues) (29), which only exist covalently bound to the core protein of cell-surface proteoglycans (syndecans and glypicans) and secreted proteoglycans (29). Heparin binding is a property common to many ECM proteins (29), but the level of affinity has never been established for TG2, which makes it difficult to estimate the real biological significance of this interaction. Heparan sulfate proteoglycans (HSPG) bind ECM ligands through the HS chains, influencing their biological activity, trafficking, and secretion. Among the HSPG subfamilies, the syndecans act as co-receptors for both ECM components and soluble ligands (30), and syndecan-4 has overlapping roles with extracellular TG2 in wound healing and fibrosis (31, 32). In this study, we show that TG2 has a surprisingly high affinity for heparin and HS, raising the hypothesis that HSPG are involved in its biological activity. We demonstrate that HSPGs are essential for the transamidating activity of TG2 at the cell surface and that syndecan-4 acts as a receptor for TG2, which is involved in the trafficking and cell-surface localization, and thus activity of TG2.  相似文献   

18.
Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms.Skeletogenesis is a complex process that involves differentiation and proliferation, but the most important step is the mineralization of the extracellular matrix (ECM)1 to form bone to physically support body functions (1). Our aging population is facing an increase in age-related diseases (e.g. diabetes and osteoporosis) that impair bone healing and require situation-adapted solutions for bone grafts and implants (2). One promising approach is the use of glycosaminoglycans (GAGs) to modify biomaterials (3). GAGs are the major organic components of ECM and play an important regulatory role in the development and remodeling of bone tissue. GAGs are polysaccharides consisting of alternating monosaccharide residues. Their sequence varies with respect to saccharide composition, glycosidic bond, and modification of the disaccharide unit, e.g. the degree of sulfation (3). GAGs modulate water and extracellular cation homeostasis. Moreover, they interact with and modulate the function of proteins like cytokines, adhesion molecules, and enzymes and thereby regulate processes such as migration, adhesion, differentiation, and proliferation of bone cells (2, 413). Thus, because human bone marrow stromal cells (hBMSC) sense their microenvironment, especially the chemical composition of the ECM (14), GAGs also promote the differentiation of bone-forming osteoblasts from hBMSC, as different studies have shown for sulfated GAGs (15, 16). Additionally, GAGs are potent molecules to promote bone anabolic activities (2).Osteoblasts synthesize the majority of extracellular matrix components and control the mineralization of the organic ECM by secreting regulatory proteins such as osteocalcin, bone sialoprotein II, and osteoadherin and modulate the local concentration of phosphate ions by tissue nonspecific alkaline phosphatase. With ongoing differentiation, osteoblasts release matrix vesicles (MV) (17). MVs are extracellular membrane-limited structures with a diameter of 100–400 nm (18, 19). According their size and biogenesis, they are grouped into the category of ectosomes (20). Mineralizing osteoblasts as well as hypertrophic chondrocytes were shown to have high levels of Ca2+ ions in their mitochondria and inorganic phosphate (Pi) in their cytoplasm prior to mineralization. Ca2+ ions are released by mitochondria and in combination with Pi, amorphous calcium phosphate is formed at sites of MV formation (1). MVs are released from apical microvilli into the ECM by pinching off or budding (18, 19). They continue to accumulate Ca2+ ions and Pi, which promotes the formation of hydroxyapatite in their lumen (21). In the second phase of mineralization, MVs release hydroxyapatite crystals that propagate continuous mineral formation in the ECM (22). Furthermore, MVs possess proteins and lipids to execute essential functions for initiating mineral formation. This includes Ca2+/Pi ion homeostasis, mineral nucleation, ECM remodeling, degradation of mineralization inhibitors or the maintenance of membrane lipid composition, and the control of ECM interactions that are crucial for controlling mineral growth and localization (2224).In previous studies we have reported that GAGs such as HA and its synthetically sulfated derivatives induce osteoblast functions, e.g. cell-matrix interaction, differentiation, mineralization, and endocytosis (25). However, it is not clear whether GAGs influence only the osteoblasts or also the formation, composition, activity, and adhesion to the ECM of secreted MVs. To delineate the molecular effects, the synthetically low-sulfated hyaluronic acid derivative (sHA1, degree of sulfation ∼1) was studied in terms of MV biogenesis, release, and composition, and the effects were compared with those caused by naturally equally low-sulfated chondroitin sulfate (CS1, degree of sulfation ∼1) as well as by non-sulfated HA. Furthermore, we isolated MVs from osteoblasts after cultivation with those GAGs and analyzed their respective protein composition in a quantitative manner using a global proteomic approach after stable isotope labeling by amino acids in cell culture (SILAC) labeling. To find out whether the alteration of the MV proteome is a reflection of the changes of the cellular proteome or whether the MV proteome is independently regulated, we compared the GAG-induced changes in both proteomes.  相似文献   

19.
20.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号