首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
The mouse intestinal epithelium represents a unique mammalian system for examining the relationship between cell division, commitment, and differentiation. Proliferation and differentiation are rapid, perpetual, and spatially well-organized processes that occur along the crypt-to-villus axis and involve clearly defined cell lineages derived from a common multipotent stem cell located near the base of each crypt. Nucleotides -1178 to +28 of the rat intestinal fatty acid binding protein gene were used to establish three pedigrees of transgenic mice that expressed SV-40 large T antigen (TAg) in epithelial cells situated in the uppermost portion of small intestinal crypts and in already committed, differentiating enterocytes as they exited these crypts and migrated up the villus. T antigen production was associated with increases in crypt cell proliferation but had no apparent effect on commitment to differentiate along enterocytic, enteroendocrine, or Paneth cell lineages. Single- and multilabel-immunocytochemical studies plus RNA blot hybridization analyses suggested that the differentiation programs of these lineages were similar in transgenic mice and their normal littermates. This included enterocytes which, based on the pattern of [3H]thymidine and 5-bromo-2'-deoxyuridine labeling and proliferating nuclear antigen expression, had reentered the cell cycle during their migration up the villus. The state of cellular differentiation and/or TAg production appeared to affect the nature of the cell cycle; analysis of the ratio of S-phase to M-phase cells (collected by metaphase arrest with vincristine) and of the intensities of labeling of nuclei by [3H]thymidine indicated that the duration of S phase was longer in differentiating, villus-associated enterocytes than in the less well-differentiated crypt epithelial cell population and that there may be a block at the G2/M boundary. Sustained increases in crypt and villus epithelial cell proliferation over a 9-mo period were not associated with the development of gut neoplasms--suggesting that tumorigenesis in the intestine may require that the initiated cell have many of the properties of the gut stem cell including functional anchorage.  相似文献   

3.
4.
Intestinal epithelial cells not only present a physical barrier to bacteria but also participate actively in immune and inflammatory responses. The migration of epithelial cells from the crypt base to the surface is accompanied by a cellular differentiation that leads to important morphological and functional changes. It has been reported that the differentiation of colonic epithelial cells is associated with reduced interleukin (IL)-8 responses to IL-1beta. Although toll-like receptor 4 (TLR4) has been previously identified to be an important component of mucosal immunity to lipopolysaccharide (LPS) in the colon, little is known about the regulation of TLR4 in colonic epithelial cells during cellular differentiation. We investigated the effects of differentiation on LPS-induced IL-8 secretion and on the expression of TLR4. Differentiation was induced in colon cancer cell line HT-29 cells by butyrate treatment or by post-confluence culture and assessed by measuring alkaline phosphatase (AP) activity. IL-8 secretion was measured by ELISA, and TLR4 protein and mRNA expressions were followed by Western blot and RT-PCR, respectively. HT-29 cells were found to be dose-dependently responsive to LPS. AP activity increased in HT-29 cells by differentiation induced by treatment with butyrate or post-confluence culture. We found that IL-8 secretion induced by LPS was strongly attenuated in differentiated cells versus undifferentiated cells, and that cellular differentiation also attenuated TLR4 mRNA and protein expressions. Pretreating HT-29 cells with tumor necrosis factor (TNF)-alpha or interferon (INF)-gamma augmented LPS-induced IL-8 secretion and TLR4 expression. These TNF-alpha- or INF-gamma-induced augmentations of LPS response and TLR4 expression were all down-regulated by differentiation. Collectively, we conclude that cellular differentiation attenuates IL-8 secretion induced by LPS in HT-29 cells, and this attenuation is related with the down-regulation of TLR4 expression.  相似文献   

5.
The human colon carcinoma cell line HT-29 differentiates into functional enterocytes upon replacement of glucose by galactose in the culture medium. Since the differentiation of other types of cells is associated with the modulation of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) receptor concentrations and since enterocytes are classical target cells for 1,25(OH)2D3 we have examined the HT-29 cells to determine whether the differentiated and undifferentiated stages could be directly linked to the presence of 1,25(OH)2D3 receptors. HT-29 cells were grown in Dulbecco's modified medium containing 10% fetal calf serum (FCS) and glucose or galactose. Cell differentiation was assessed by measuring the brush border hydrolase, maltase. 1,25(OH)2D3 receptors were studied in the cells after 48 h without FCS. Nuclear uptake was measured in intact dispersed cells and the receptor protein was further characterized by vitamin D metabolite binding specificity, sucrose density gradient analysis and binding to DNA-cellulose. Maltase activity was 5-fold greater in differentiated HT-29 cells than in undifferentiated cells. Scatchard analysis showed a highly specific saturable (9500 sites per cell) high affinity (2 x 10(-10) M), binding of 1,25(OH)2D3 in undifferentiated cells. This receptor-like protein sedimented at 3.3S, bound to and eluted from DNA-cellulose and had all the characteristics of a 1,25(OH)2D3 receptor. No specific binding was detected in differentiated HT-29 cells. The presence of 1,25(OH)2D3 receptors in undifferentiated HT-29 cells implies that these cells are targets for vitamin D. The maltase activity increased significantly when undifferentiated cells were exposed to 1,25(OH)2D3 for 5-6 days, indicating that the hormone can promote differentiation of HT-29 cells. These results demonstrate that HT-29 cells can provide a new model for studying steroid receptor regulation and cell differentiation.  相似文献   

6.
7.
8.
9.
Expression and synthesis of sucrase-isomaltase (SI) were studied in human jejunum and in the colon tumor cell lines Caco-2 and HT-29. Twelve monoclonal antibodies produced against the adult human intestinal enzyme were shown to recognize specifically SI by immunoprecipitation of 14C-labeled membrane proteins, analysis of enzyme activities in the immunoprecipitates, and immunoblotting. These antibodies produced markedly different patterns of immunofluorescent staining of the intestinal mucosa. Three of them were specific for the absorptive villus cells, while the other nine also stained the luminal membrane of the proliferative crypt cells, with different intensities which paralleled their ability to recognize SI in immunoblots. Sequential immunoprecipitation of SI solubilized from purified brush borders or entire jejunum with four selected antibodies demonstrated the presence of different forms of the enzyme, expressed by either villus or crypt cells. Two immunologically distinct forms of high mannose precursor (hmP1 and hmP2) were also identified in both jejunal mucosa and colon tumor cells. They were present as monomers and their immunological differences were preserved under various ionic and pH conditions. Pulse-chase studies indicated that, in Caco-2 cells, hmP1 is converted into hmP2 within 30 min of chase, and hmP2 is then processed into the complex-glycosylated precursor destined for the brush border membrane. hmP1 was immunologically related to the mature SI present in crypt cells and lacked the epitopes specific for mature SI expressed by villus cells. These results demonstrated that sucrase-isomaltase is synthesized by both crypt and villus cells, but processing of the cotranslationally glycosylated high mannose precursor is dependent on the state of differentiation of the enterocytes. This may represent a general mechanism for the regulation of expression of differentiated cell products at the post-translational level.  相似文献   

10.
11.
Abstract. The development of peroxisomes and expression of their enzymes were investigated in differentiating intestinal epithelial cells during their migration along the crypt-villus axis. Sequential cell populations harvested by a low-temperature method were identified by microscopy, determination of alkaline phosphatase and sucrase activities and incorporation of [3H]-thymidine into DNA. Ultrastructural cytochemistry after staining for catalase activity, revealed the presence of peroxisomes in undifferentiated stem cells located in the crypt region. Morphometry indicated that the number of these organelles increased as intestinal epithelial cells differentiate. Catalase activity was higher in the crypt cells than in the mature enterocytes harvested from villus tips. On the other hand, an increasing gradient of activity was observed from crypts to villus tips for peroxisomal oxidases, i.e. fatty acyl coA oxidase, D-amino acid oxidase and polyamine oxidase. These findings indicate that biogenesis of peroxisomes occurs during migration of intestinal epithelial cells along the crypt-villus axis and that peroxisomal oxidases contribute substantially to the biochemical maturation of enterocytes.  相似文献   

12.
Integrins are important mediators of cell-laminin interactions. In the small intestinal epithelium, which consists of spatially separated proliferative and differentiated cell populations located, respectively, in the crypt and on the villus, laminins and laminin-binding integrins are differentially expressed along the crypt-villus axis. One exception to this is the integrin alpha(6)beta(4), which is thought to be ubiquitously expressed by intestinal cells. However, in this study, a re-evaluation of the beta(4) subunit expression with different antibodies revealed that two forms of beta(4) exist in the human intestinal epithelium. Furthermore, we show that differentiated enterocytes express a full-length 205-kDa beta(4)A subunit, whereas undifferentiated crypt cells express a novel beta(4)A subunit that does not contain the COOH-terminal segment of the cytoplasmic domain (beta(4)A(ctd-)). This new form was not found to arise from alternative beta(4) mRNA splicing. Moreover, we found that these two beta(4)A forms can associate into alpha(6)beta(4)A complexes; however, the beta(4)A(ctd-) integrin expressed by the undifferentiated crypt cells is not functional for adhesion to laminin-5. Hence, these studies identify a novel alpha(6)beta(4)A(ctd-) integrin expressed in undifferentiated intestinal crypt cells that is functionally distinct.  相似文献   

13.
Gene expression of activin, activin receptors, and follistatin was investigated in vivo and in vitro using semiquantitative RT-PCR in intestinal epithelial cells. Rat jejunum and the intestinal epithelial cell line IEC-6 expressed mRNA encoding the betaA-subunit of activin, alpha-subunit of inhibin, activin receptors IB and IIA, and follistatin. An epithelial cell isolation study focused along the crypt-villus axis in rat jejunum showed that betaA mRNA levels were eight- to tenfold higher in villus cells than in crypt cells. Immunohistochemistry revealed the expression of activin A in upper villus cells. The human intestinal cell line Caco-2 was used as a differentiation model of enterocytes. Four- to fivefold induction of betaA mRNA was observed in postconfluent Caco-2 cells grown on filter but not in those cells grown on plastic. In contrast, follistatin mRNA was seen to be reduced after reaching confluence. Exogenous activin A dose-dependently suppressed the proliferation and stimulated the expression of apolipoprotein A-IV gene, a differentiation marker, in IEC-6 cells. These results suggest that the activin system is involved in the regulation of such cellular functions as proliferation and differentiation in intestinal epithelial cells.  相似文献   

14.
The function of retinoblastoma protein (pRb) in the regulation of small intestine epithelial cell homeostasis has been challenged by several groups using various promoter-based Cre transgenic mouse lines. Interestingly, different pRb deletion systems yield dramatically disparate small intestinal phenotypes. These findings confound the function of pRb in this dynamic tissue. In this study, Villin-Cre transgenic mice were crossed with Rb (flox/flox) mice to conditionally delete pRb protein in small intestine enterocytes. We discovered a novel hyperplasia phenotype as well as ectopic cell cycle reentry within villus enterocytes in the small intestine. This phenotype was not seen in other pRb family member (p107 or p130) null mice. Using a newly developed crypt/villus isolation method, we uncovered that expression of pRb was undetectable, whereas proliferating cell nuclear antigen, p107, cyclin E, cyclin D3, Cdk2, and Cdc2 were dramatically increased in pRb-deficient villus cells. Cyclin A, cyclin D1, cyclin D2, and Cdk4/6 expression was not affected by absent pRb expression. pRb-deficient villus cells appeared capable of progressing to mitosis but with higher rates of apoptosis. However, the cycling villus enterocytes were not completely differentiated as gauged by significant reduction of intestinal fatty acid-binding protein expression. In summary, pRb, but not p107 or p130, is required for maintaining the postmitotic villus cell in quiescence, governing the expression of cell cycle regulatory proteins, and completing of absorptive enterocyte differentiation in the small intestine.  相似文献   

15.
Abstract. The development of peroxisomes and expression of their enzymes were investigated in differentiating intestinal epithelial cells during their migration along the crypt-villus axis. Sequential cell populations harvested by a low-temperature method were identified by microscopy, determination of alkaline phosphatase and sucrase activities and incorporation of [3H]-thymidine into DNA. Ultrastructural cytochemistry after staining for catalase activity, revealed the presence of peroxisomes in undifferentiated stem cells located in the crypt region. Morphometry indicated that the number of these organelles increased as intestinal epithelial cells differentiate. Catalase activity was higher in the crypt cells than in the mature enterocytes harvested from villus tips. On the other hand, an increasing gradient of activity was observed from crypts to villus tips for peroxisomal oxidases, i.e. fatty acyl coA oxidase, D-amino acid oxidase and polyamine oxidase. These findings indicate that biogenesis of peroxisomes occurs during migration of intestinal epithelial cells along the crypt-villus axis and that peroxisomal oxidases contribute substantially to the biochemical maturation of enterocytes.  相似文献   

16.
In situ hybridization and immunocytochemical techniques have been used to examine the distribution of vitamin-D-induced calbindin mRNA and calbindin protein in enterocytes lining the crypts and villi of chicken small intestine. Basal villus enterocytes contained approximately twice as much calbindin but over three times as much calbindin mRNA compared to values found in basal crypt and upper villus enterocytes, all values being measured 2 days after vitamin D injection into D-deficient chickens. Virtually no calbindin mRNA was detected in tissues taken from control D-deficient birds. Direct proportionality found between calbindin mRNA and calbindin content in enterocytes of basal crypt, mid and upper villus suggests pre-translational control over calbindin synthesis. The implications of possible inefficient translation of calbindin mRNA in basal villus enterocytes are discussed. Present methods of analysis provide a novel way to study mechanisms controlling gene expression throughout the whole process of enterocyte differentiation.  相似文献   

17.
18.
After treatment with swainsonine, an inhibitor of both lysosomal alpha-mannosidase and Golgi alpha-mannosidase-II activities, analysis of [3H]mannose-labeled glycans showed that HT-29 cells, derived from a human colonic adenocarcinoma, displayed distinct patterns of N-glycan expression, depending upon their state of enterocytic differentiation. In differentiated HT-29 cells hybrid-type chains were detected, whereas undifferentiated HT-29 cells accumulated high-mannose-type oligosaccharide, despite our demonstration of Golgi alpha-mannosidase-II activity in both cell populations. Pulse/chase experiments carried out in the presence of swainsonine revealed that the persistence of high-mannose-type chains in undifferentiated HT-29 cells was the result of the stabilization of glycoproteins substituted with these glycans. These data suggest that in undifferentiated HT-29 cells, glycoproteins with high-mannose-type oligosaccharides are delivered to a degradative compartment containing swainsonine-sensitive alpha-mannosidase(s), whereas in differentiated HT-29 cells glycoproteins enter a compartment in which alpha-mannosidase II (Golgi apparatus) is present. Thus, this apparent dual effect of swainsonine on N-glycan trimming may reflect differences in the intracellular traffic of glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells.  相似文献   

19.
The gene defective in cystic fibrosis has recently been shown to code for a membrane protein designated the "cystic fibrosis transmembrane conductance regulator" (CFTR) protein. While it has been shown that detectable levels of the mRNA for the normal CFTR protein are present in epithelial cells from different tissues, factors which regulate CFTR expression have not been identified. A clonal cell line originating from a human colon adenocarcinoma (HT29-18) differentiates to multiple epithelial cell types when deprived of glucose in the culture medium. In these studies, mRNA isolated from these cells was examined by hybridization to a 1.45-kilobase cDNA probe which encodes transmembrane portions of the CFTR protein between exons 13 and 19. Cellular differentiation of HT29-18 causes a 9-18-fold increase in CFTR mRNA abundance versus the mRNA for the structural proteins actin and tubulin. Cellular differentiation also causes a 5-fold increase in second messenger-regulated Cl- transport which is sensitive to a Cl- channel blocker (diphenylamine 2-carboxylate). Subclones of HT29-18 which are committed to differentiate to either a mucin-secreting (HT29-18-N2) or an "enterocyte-like" (HT29-18-C1) phenotype have also been examined. In both subclones, elevated levels of CFTR mRNA are observed when compared with undifferentiated HT29-18 cells. However, during cellular differentiation, the regulation of CFTR mRNA abundance and membrane enzyme expression by the subclones is different from HT29-18. The results show that elevated CFTR mRNA occurs in multiple differentiated intestinal epithelial cell types, despite a phenotype-specific regulation of membrane protein expression. This suggests that CFTR expression plays a role in the differentiated functions of multiple epithelial phenotypes and that both cellular differentiation and cellular phenotypes are factors which regulate CFTR expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号