首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioleaching is an economical method for the recovery of metals that requires low investment and operation costs. Furthermore, it is generally more environmentally friendly than many physicochemical metal extraction processes. The bioleaching of chalcopyrite in shake flasks was investigated with pure and mixed cultures of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Acidithiobacillus caldus, and Leptospirillum ferriphilum. The mixed cultures containing both iron- and sulfur-oxidizing bacteria were more efficient than the pure culture alone. The presence of sulfur-oxidizing bacteria positively increased the dissolution rate and the percentage recovery of copper from chalcopyrite. Mixed cultures consisting of moderately thermophilic L. ferriphilum and A. caldus leached chalcopyrite more effectively than mesophilic A. ferrooxidans pure and mixed cultures. The decrease of the chalcopyrite dissolution rate in leaching systems containing A. ferrooxidans after 12–16 days coincided with the formation of jarosite precipitation as a passivation layer on the mineral surface during bioleaching. Low pH significantly reduces jarosite formation in pure and mixed cultures of L. ferriphilum and A. caldus.  相似文献   

2.
The capacity of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans to reduce different concentrations of hexavalent chromium in shake flask cultures has been investigated. A. ferrooxidans reduces 100% of chromium (VI) at concentrations of 1, 2.5 and 5 ppm, but in the presence of 10 ppm only 42.9% of chromium (VI) was reduced after 11 days of incubation. A. thiooxidans showed a lower capacity to reduce this ion and total reduction of chromium (VI) was only obtained for concentrations of 1 and 2.5 ppm, whereas 64.7% and 30.5% was reached for 5 and 10 ppm, respectively, after 11 days. A continuous flow mode system was subsequently investigated, in which A. thiooxidans was immobilized on elemental sulphur and the acidic medium obtained was employed to solubilize chromium (III) and to reduce chromium (VI) present in a real electroplating waste [30% of chromium (III) and 0.1% of chromium (VI)]. The system enabled the reduction of 92.7% of hexavalent chromium and represents a promising way to treat this type of waste in the industry.  相似文献   

3.
The effect of copper and zinc ions on sulphur oxidation by Acidithiobacillus thiooxidans, strain SFR01, isolated from anaerobic sewage sludge was assessed, resulting in tolerance levels up to 20 and 200 mmol l–1 for copper and zinc, respectively. The tolerance levels obtained were higher than the concentration of copper and zinc usually found in the collected sewage sludge. The tolerance levels obtained indicate no constraints for sludge bioleaching of those metals due to their toxicities to the indigenous A. thiooxidans.  相似文献   

4.
To estimate the bioleaching performance of chalcopyrite for various hydraulic residence times (HRTs), laboratory-scale bioleaching of chalcopyrite concentrate was carried out in a continuous bubble column reactor with three different HRTs of 120, 80 and 40 h, respectively. An extraction rate and ratio of 0.578 g Cu l−1 h−1 and 39.7%, respectively, were achieved for an HRT of 80 h at a solids concentration of 10% (w/v). Lower bioleaching performances than this were obtained for a longer HRT of 120 h and a shorter HRT of 40 h. In addition, there was obvious competition between Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans to oxidize ferrous iron, causing large compositional differences between the microbial communitys obtained for the different HRTs. Leptospirillum ferriphilum and Acidithiobacillus thiooxidans were found to be the dominant microbes for the longer HRT (120 h). Acidithiobacillus ferrooxidans became the dominant species when the HRT was decreased. The proportion of Acidithiobacillus thiooxidans was comparatively constant in the microbial community throughout the three process stages.  相似文献   

5.
The pH of two buffered media having their initial pH ranging between 3.5 and 8.5 was monitored during growth of Acidithiobacillus thiooxidans. The first media was buffered with tricyclic phosphate whereas the second one contained phosphate ions and thus exhibited a stronger buffer capacity. Bacterial growth was not observed in any of the two media when the initial pH was higher than 5.5. On the other hand, for initial pH lower than 5.5, bacterial growth induced pH drops in both media. This drop was preceded by a lag phase during which the pH remained unchanged. However, in the medium buffered with phosphate ions, the lag periods were longer. As these media were developed for designing a bioleaching test to evaluate concrete biodeterioration caused by A. thiooxidans, the medium containing tricyclic phosphate appeared to be the most appropriate.  相似文献   

6.
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.  相似文献   

7.
Nineteen strains of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, including 12 strains isolated from coal, copper, gold and uranium mines in Brazil, strains isolated from similar sources in other countries and the type strains of the two species were characterized together with the type strain of A. caldus by using a combination of molecular systematic methods, namely ribotyping, BOX- and ERIC-PCR and DNA-DNA hybridization assays. Data derived from the molecular fingerprinting analyses showed that the tested strains encompassed a high degree of genetic variability. Two of the Brazilian A. ferrooxidans organisms (strains SSP and PCE) isolated from acid coal mine waste and uranium mine effluent, respectively, and A. thiooxidans strain DAMS, isolated from uranium mine effluent, were the most genetically divergent organisms. The DNA-DNA hybridization data did not support the allocation of Acidithiobacillus strain SSP to the A. ferrooxidans genomic species, as it shared only just over 40% DNA relatedness with the type strain of the species. Acidithiobacillus strain SSP was not clearly related to A. ferrooxidans in the 16S rDNA tree.  相似文献   

8.
The use of surfactants as a method for solubilization and removal of heavy metal contamination from soil has been reported before. Biosurfactants produced by some microorganisms are able to modify the surface of various metals and aggregate on interphases favoring the metal separation process from contaminated environments. We evaluated the feasibility of enhancing the removal of metal ions from mineral waste/contaminated soils using alternate cycles of treatment with rhamnolipid biosurfactants and bioleaching with a mixed bacterial culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Bioleaching alone removed 50% Zn and 19% Fe. When rhamnolipids were used at low concentration (0.4 mg/mL), 11% Fe and 25% Zn were removed, while at 1 mg/mL 19% Fe and 52% Zn removal were achieved. When using a cyclic treatment combining bioleaching and biosurfactants, metal removal reached up to 36% for Fe and 63% to 70% for Zn.  相似文献   

9.
氧化亚铁硫杆菌(At.f)是能够利用Fe2 和硫化矿来获取能量的一种化能自养菌.这种细菌在金属硫化矿的生物浸出中起着重要的作用.在硫化矿的生物浸出过程中,浸矿细菌通常会遇到多种胁迫条件,如温度的变化、营养成分的缺失和pH值的变化等,这些因素会影响到细菌的活性.因此对在胁迫条件下这类细菌的应急反应生理机制的研究具有重要的意义.SELDI蛋白质芯片技术是近年一种高通量的蛋白质组学研究技术.测定了以Fe2 为能源正常条件培养的At.f和磷酸盐缺失培养At.f的生长情况,绘制了相应的生长曲线;采用NP20蛋白质芯片,对At.f总蛋白的蛋白质芯片上样量进行了优化.在此基础上,采用IMAC-Cu、SAX2、WCX2三种特异性SELDI蛋白质芯片技术,获取了磷酸盐缺失培养At.f与正常条件培养的At.f的比较蛋白质图谱,采用软件对比较蛋白质图谱进行分析,发现了磷酸盐缺失培养At.f的13个明显差异表达的蛋白质分子,为进一步分离鉴定这些差异表达蛋白质奠定了基础.  相似文献   

10.
Summary In the presence of iron, which is always associated with natural sulphide ores, the percentages of copper dissolution in the bioleaching of covellite were 34 and 45 % when Thiobacillus thiooxidans and Thiobacillus ferrooxidans were used together and when an indirect bioleaching with attached bacteria was performed respectively. In the latter, the percentage of copper dissolution was still higher than the percentages obtained with pure cultures (36 % with a T. thiooxidans culture and 40 % with a T. ferrooxidans culture).  相似文献   

11.
《Process Biochemistry》2007,42(9):1265-1271
The aim of this paper is to determine the efficiency of bioleaching of arsenic in realgar, a Chinese mineral drug, using pure cultures of Acidithiobacillus ferrooxidans or Acidithiobacillus thiooxidans and a mixed culture of A. ferrooxidans and A. thiooxidans. The experiments were carried out in shaker flasks, at 150 rpm, 30 °C at a culture pH of 1.80. To investigate the mechanism of the bioleaching in realgar, media with and without ferrous iron were chosen for the experiments. The results showed that the leaching rate of arsenic in realgar after 20 days was higher (43%) in A. ferrooxidans cultures with ferrous iron compared to cultures without ferrous iron (10%), and the leaching rate of A. thiooxidans cultures only increased from 21% to 23% in the presence of ferrous iron. The leaching rate of arsenic in mixed culture with ferrous iron was greatly enhanced from 16% to 56%, indicating that bioleaching in mixed culture is preferable for the dissolution of realgar.  相似文献   

12.
【目的】土壤重金属污染问题日益受到关注,其中钒污染逐渐成为研究热点。淋洗是土壤修复的重要手段,但存在污染大、成本高的缺点。生物淋洗技术因其经济高效且环保的特点能够应用于土壤的修复,但其对钒污染土壤的修复,认识仍非常有限。【方法】本研究采用嗜酸性氧化亚铁硫杆菌对钒污染土壤进行了生物淋洗试验,通过影响因素试验探究了钒的最佳浸出条件,并应用扫描电子显微镜-能量色散X射线谱分析了钒在淋洗过程中的变化,最后对代谢产物进行了解析。【结果】微生物次生代谢产物能促进土壤中钒的溶出。氧化亚铁硫杆菌对土壤钒的浸出效率较高,生物淋洗20 d后土壤中钒的浸出率达到27.4%,进一步的影响因素试验表明,在固体浓度为3%、接种体积为10%、初始pH值为1.8、初始Fe2+的浓度为3.0 g/L的条件下,土壤中钒的浸出效果最佳。SEM-EDS分析证实生物淋洗后土壤中钒含量减少,其中以非残渣态形式存在的钒更容易被浸出。代谢组学分析显示氧化亚铁硫杆菌在浸出过程中产生了大量代谢产物来应对重金属胁迫。【结论】生物淋洗技术能够有效地实现土壤钒污染的修复,本研究为钒污染土壤提供了一种环境友好的修复方式。  相似文献   

13.
14.
Bioleaching of heavy metals from contaminated soil was carried out using indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out by varying sulfur/soil ratio from 0.03 to 0.33 to evaluate the optimum ratio for efficient bioleaching of heavy metals from soil. The influence of sulfur/soil ratio on the bioleaching efficiency was assessed based on decrease in pH, increase in oxidation–reduction potential, sulfate production and solubilization of heavy metals from the soil. Decrease in pH, increase in oxidation–reduction potential and sulfate production was found to be better with the increase in sulfur/soil ratio. While the final pH of the system with different sulfur/soil ratio was in the range of 4.1–0.7, oxidation reduction potential varied from 230 to 629 mV; sulfate production was in the range of 2,786–8,872 mg/l. Solubilization of chromium, zinc, copper, lead and cadmium from the contaminated soil was in the range of 11–99%. Findings of the study will help to optimize the ratio of sulfur/soil to achieve effective bioleaching of heavy metals from contaminated soils.  相似文献   

15.
Liu Y  Yin H  Zeng W  Liang Y  Liu Y  Baba N  Qiu G  Shen L  Fu X  Liu X 《Bioresource technology》2011,102(17):8092-8098
Acidithiobacillus thiooxidans A01 was added to a consortium of bioleaching bacteria including Acidithiobacilluscaldus, Leptospirillumferriphilum, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans, Acidiphilium spp., and Ferroplasma thermophilum cultured in modified 9 K medium containing 0.5% (w/v) pyrite, and 10.7% increase of bioleaching rate was observed. Changes in community structure and gene expression were monitored with real-time PCR and functional gene arrays (FGAs). Real-time PCR showed that addition of At. thiooxidans caused increased numbers of all consortium members except At. caldus, and At. caldus, L. ferriphilum, and F. thermophilum remained dominant in this community. FGAs results showed that after addition of At. thiooxidans, most genes involved in iron, sulfur, carbon, and nitrogen metabolisms, metal resistance, electron transport, and extracellular polymeric substances of L. ferriphilum, F. thermophilum, and Acidiphilium spp., were up-regulated while most of these genes were down-regulated at 70-78 h in At. caldus and up-regulated in At. ferrooxidans, then down-regulated at 82-86 h.  相似文献   

16.
A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S2, was isolated from coal heap drainage. The bacterium was motile, Gram-negative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 μm, and grew optimally at 42–45°C and an initial pH of 2.5. The strain S2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (>99% similarity in gene sequence). The combination of the strain S2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.  相似文献   

17.
Selective enrichments enabled the recovery of moderately thermophilic isolates with copper bioleaching ability from a spent copper sulfide heap. Phylogenetic and physiological characterization revealed that the isolates were closely related to Sulfobacillus thermosulfidooxidans, Acidithiobacillus caldus and Acidimicrobium ferrooxidans. While isolates exhibited similar physiological characteristics to their corresponding type strains, in general they displayed similar or greater tolerance of high copper, zinc, nickel and cobalt concentrations. Considerable variation was found between species and between several strains related to S. thermosulfidooxidans. It is concluded that adaptation to metals present in the bioleaching heap from which they were isolated contributed to but did not entirely explain high metals tolerances. Higher metals tolerance did not confer stronger bioleaching performance, suggesting that a physical, mineralogical or chemical process is rate limiting for a specific ore or concentrate.  相似文献   

18.
The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate.  相似文献   

19.
Two strains of Thiobacillus, T. ferrooxidans and T. thiooxidans, have been isolated from a bacterial inoculum cultivated during a one-year period in a 1001 continuous laboratory pilot for treatment of an arsenopyrite/pyrite concentrate. The optimum pH for the growth of both strains has been found to be between 1.7 and 2.5. Because of the high metal toxicity in bioleach pulps, the tolerance of T. ferrooxidans and T. thiooxidans with respect to iron and arsenic has been studied. The growth of both strains is inhibited with 10 g/l of ferric ion, 5 g/l of arsenite and 40 g/l of arsenate. 20 g/l of ferrous iron is toxic to T. ferrooxidans but 30 g/l is necessary to impede the growth of T. thiooxidans.  相似文献   

20.
Summary Random amplification of polymorphic DNA (RAPD), a PCR-based technique was applied to evaluate genomic diversity among three strains of Acidithiobacillus thiooxidans, five strains of Acidithiobacillus ferrooxidans and one acidophilic moderate thermophile strain, using 45 random primers of five different series. More than 2200 bands were observed, with an average of 45 bands per primer. Primer OPC-3 produced the maximum number of fragments whereas minimum numbers of fragments were produced with primer OPA-5. A dendrogram was generated using cluster analysis by the unweighted pair group method of arithmetic means (UPGMA). The dendrogram showed three groups with similarity ranging from 29 to 85%. The maximum similarity (85%) was observed between the strains T.t1 and T.t2 of Acidithiobacillus thiooxidans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号