首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Since the initial characterization of chromatin remodeling as an ATP-dependent process, many studies have given us insight into how nucleosome-remodeling complexes can affect various nuclear functions. However, the multistep DNA-histone remodeling process has not been completely elucidated. Although new studies are published on a nearly weekly basis, the nature and roles of interactions of the individual SWI/SNF- and ISWI-based remodeling complexes and DNA, core histones, and other chromatin-associated proteins are not fully understood. In addition, the potential changes associated with ATP recruitment and its subsequent hydrolysis have not been fully characterized. This review explores possible mechanisms by which chromatin-remodeling complexes are recruited to specific loci, use ATP hydrolysis to achieve actual remodeling through disruption of DNA-histone interactions, and are released from their chromatin template. We propose possible roles for ATP hydrolysis in a chromatin-release/target-scanning process that offer an alternative to or complement the often overlooked function of delivering the energy required for sliding or dislodging specific subsets of core histones.  相似文献   

2.
3.
4.
Chromatin remodeling by nuclear receptors   总被引:4,自引:0,他引:4  
Hebbar PB  Archer TK 《Chromosoma》2003,111(8):495-504
  相似文献   

5.
6.
Chromatin serves to package, protect and organize the complex eukaryotic genomes to assure their stable inheritance over many cell generations. At the same time, chromatin must be dynamic to allow continued use of DNA during a cell's lifetime. One important principle that endows chromatin with flexibility involves ATP-dependent 'remodeling' factors, which alter DNA-histone interactions to form, disrupt or move nucleosomes. Remodeling is well documented at the nucleosomal level, but little is known about the action of remodeling factors in a more physiological chromatin environment. Recent findings suggest that some remodeling machines can reorganize even folded chromatin fibers containing the linker histone H1, extending the potential scope of remodeling reactions to the bulk of euchromatin.  相似文献   

7.
8.
9.
In the past two years, a variety of forward genetic screens have revealed predicted plant chromatin remodeling components that are involved in either differential histone acetylation or ATP-dependent SWI2/SNF2-related complexes. Combined with the results of recent reverse genetic studies, these findings have begun to provide the groundwork for determining the function of chromatin-based control in plants.  相似文献   

10.
11.
12.
Havas K  Flaus A  Phelan M  Kingston R  Wade PA  Lilley DM  Owen-Hughes T 《Cell》2000,103(7):1133-1142
ATP-dependent chromatin remodeling activities participate in the alteration of chromatin structure during gene regulation. All have DNA- or chromatin-stimulated ATPase activity and many can alter the structure of chromatin; however, the means by which they do this have remained unclear. Here we describe a novel activity for ATP-dependent chromatin remodeling activities, the ability to generate unconstrained negative superhelical torsion in DNA and chromatin. We find that the ability to distort DNA is shared by the yeast SWI/SNF complex, Xenopus Mi-2 complex, recombinant ISWI, and recombinant BRG1, suggesting that the generation of superhelical torsion represents a primary biomechanical activity shared by all Snf2p-related ATPase motors. The generation of superhelical torque provides a potent means by which ATP-dependent chromatin remodeling activities can manipulate chromatin structure.  相似文献   

13.
A report on the 12th Tenovus Scotland Symposium 'Stability and Regulation of Genes and Genomes', Glasgow UK, 6-7 April 2006.  相似文献   

14.
ATP-dependent chromatin remodeling in T cells   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
ATP-dependent chromatin remodeling: going mobile   总被引:3,自引:0,他引:3  
Peterson CL 《FEBS letters》2000,476(1-2):68-72
Members of the ATP-dependent class of chromatin remodeling enzymes are found in all eukaryotes where they play key roles in many DNA-mediated processes. Each of these enzymes are multi-subunit assembles that hydrolyze approximately 1000 ATP/min. The energy of ATP hydrolysis is used to disrupt the chromatin structure which can be scored by enhanced factor binding, disruption of the DNase I cleavage pattern of mononucleosomes, formation of dinucleosomes, movements of histone octamers in cis and in trans, and by generation of nuclease hypersensitive sites. Here the biochemical properties of these enzymes are reviewed and the manner in which ATP-driven nucleosome movements might account for many of these diverse activities is discussed.  相似文献   

18.
19.
Progression of cells through the cell cycle is central to normal cell proliferation, and checkpoints that regulate this cycle are targets of tumorigenic mutations. One of these checkpoints is the Rb family of proteins that seems to regulate exit of cells from both G(1) and S phase of the cell cycle. Recent studies have linked the function of the Rb family to chromatin remodeling enzymes.  相似文献   

20.
Chromatin remodeling and human disease   总被引:6,自引:0,他引:6  
In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号