首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Roz N  Rehavi M 《Life sciences》2003,73(4):461-470
Extracts of Hypericum perforatum (St. John's wort) have antidepressant properties in depressed patients and exert antidepressant-like action in laboratory animals. The phloroglucinol derivative hyperforin has become a topic of interest, as this Hypericum component is a potent inhibitor of monoamines reuptake. The molecular mechanism by which hyperforin inhibits monoamines uptake is yet unclear. In the present study we try to clarify the mechanism by which hyperforin inhibits the synaptic vesicle transport of monoamines. The pH gradient across the synaptic vesicle membrane, induced by vacuolar type H(+)-ATPase, is the major driving force for vesicular monoamines uptake and storage. We suggest that hyperforin, like the protonophore FCCP, dissipates an existing Delta pH generated by an efflux of inwardly pumped protons. Proton transport was measured by acridine orange fluorescence quenching. Adding Mg-ATP to a medium containing 130 mM KCl and synaptic vesicles caused an immediate decrease in fluorescence of acridine orange and the addition of 1 microM FCCP abolished this effect. H(+)-ATPase dependent proton pumping was inhibited by hyperforin in a dose dependent manner (IC(50) = 1.9 x 10(-7) M). Hyperforin acted similarly to the protonophore FCCP, abolishing the ATP induced fluorescence quenching (IC(50) = 4.3 x 10(-7) M). Hyperforin and FCCP had similar potencies for inhibiting rat brain synaptosomal uptake of [3H]monoamines as well as vesicular monoamine uptake. The efflux of [3H]5HT from synaptic vesicles was sensitive to both drugs, thus 50% of preloaded [3H]5HT was released in the presence of 2.1 x 10(-7) M FCCP and 4 x 10(-7) M hyperforin. The effect of hyperforin on the pH gradient in synaptic vesicle membrane may explain its inhibitory effect on monoamines uptake, but could only partially explain its antidepressant properties.  相似文献   

2.
Roz N  Rehavi M 《Life sciences》2004,75(23):2841-2850
Hyperforin, a phloroglucinol derivative found in Hypericum perforatum (St. John's wort) extracts has antidepressant properties in depressed patients. Hyperforin has a unique pharmacological profile and it inhibits uptake of biogenic monoamines as well as amino acid transmitters. We have recently showed that the monoamines uptake inhibition exerted by hyperforin is related to its ability to dissipate the pH gradient across the synaptic vesicle membrane thereby interfering with vesicular monoamines storage. In the present study we demonstrate that hyperforin induces dose-dependent efflux of preloaded [3H]5HT and [3H]DA from rat brain slices. Moreover, we show that hyperforin attenuates depolarization- dependent release of monoamines, while increasing monoamine release by amphetamine or fenfluramine. It is also demonstrated that preincubation of brain slices with reserpine is associated with dose- dependent blunting of efflux due to hyperforin. Our data indicate that hyperforin-induced efflux of [3H]5HT and [3H]DA reflect elevated cytoplasmic concentrations of the two monoamines secondary to the depletion of the synaptic vesicle content and the compartmental redistribution of nerve ending monoamines.  相似文献   

3.
Jensen AG  Hansen SH  Nielsen EO 《Life sciences》2001,68(14):1593-1605
The present paper describe investigations which demonstrate that hyperforin is not the only phloroglucinol derivative in extracts of the medicinal plant Hypericum perforatum L., which possess a biological activity. Hyperforin was the major lipophilic constituent in two different extracts, whereas the amount of adhyperforin was approximately 10 times lower. Adhyperforin, like hyperforin, is a potent inhibitor of the uptake of dopamine, serotonin and noradrenaline. Neither hyperforin nor adhyperforin inhibited binding of the cocaine analogue, [3H]WIN 35,428 to the dopamine transporter. However, the known antidepressives imipramine, nomifensine and fluoxetine all inhibited binding of [3H]WIN 35,428, indicating that hyperforin and adhyperforin do not bind to the same site on the dopamine transporter as these compounds. Furthermore, hyperforin and adhyperforin did not prevent dopamine binding, but inhibited dopamine translocation. Our studies further support recent reports suggesting that the effect of hyperforin on uptake of monoamines is probably not caused by a direct effect of hyperforin on known sites on the transporters.  相似文献   

4.
Transmitter uptake and exocytosis of secretory vesicles are two essential aspects of neurotransmission. Here we show that transient overexpression of plasma membrane monoamine transporters in rat pheochromocytoma PC12 cells induced an approximate 20-fold enhancement of cellular uptake of monoamines. Intravesicular amine concentration was greatly increased, as demonstrated directly by carbon fibre amperometry. However, the amount of stored monoamines diminished over a 5-h period, unless monoamine oxidase was inhibited, indicating that monoamines leak out from secretory vesicles. This efflux of monoamines accounts for the reported dependence of vesicular monoamine content (the quantal size) on the kinetics of vesicular monoamine uptake. Measuring radiolabelled monoamines release from the cell population provided accurate determination of the secretory activity of the subpopulation (10-20%) of cells transfected with monoamine transporters, since they contained about 95% of the radiolabel. Accordingly, significant modification of the secretory responses was observed, at the cell population level, upon transient expression of the serotonin transporter and of proteins known to interfere with exocytosis, such as botulinum neurotoxin C1, GTPase-deficient Rab3 proteins, truncated Rabphilin constructs or Rim. The co-transfection assay described here, based on transient expression of monoamine transporters, should prove useful in functional studies of the secretory machinery.  相似文献   

5.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.  相似文献   

6.
The activity of vesicular monoamine transporters (VMATs) is down-regulated by the G-protein alpha-subunits of G(o2) and G(q), but the signaling pathways are not known. We show here that no such regulation is observed when VMAT1 or VMAT2 are expressed in Chinese hamster ovary (CHO) cells. However, when the intracellular compartments of VMAT-expressing CHO cells are preloaded with different monoamines, transport becomes susceptible to G-protein-dependent regulation, with differences between the two transporter isoforms. Epinephrine induces G-protein-mediated inhibition of transmitter uptake in CHOVMAT1 cells but prevents inhibition induced by dopamine in CHOVMAT2 cells. Epinephrine also antagonizes G-protein-mediated inhibition of monoamine uptake by VMAT2 expressing platelets or synaptic vesicles. In CHOVMAT2 cells G-protein-mediated inhibition of monoamine uptake can be induced by 5-hydroxytryptamine (serotonin) 1B receptor agonists, whereas alpha1 receptor agonists modulate uptake into CHOVMAT1 cells. Accordingly, 5-hydroxytryptamine 1B receptor antagonists prevent G-protein-mediated inhibition of uptake in partially filled platelets and synaptic vesicles expressing VMAT2. CHO cells expressing VMAT mutants with a shortened first vesicular loop transport monoamines. However, no or a reduced G-protein regulation of uptake can be initiated. In conclusion, vesicular content is involved in the activation of vesicle associated G-proteins via a structure sensing the luminal monoamine content. The first luminal loop of VMATs may represent a G-protein-coupled receptor that adapts vesicular filling.  相似文献   

7.
M Zucker  A Weizman  M Rehavi 《Life sciences》2001,69(19):2311-2317
The present study indicates that human platelets can be used as an accessible peripheral model not only for the plasma membrane serotonin transporter, but also for the vesicular monoamine transporter. The vesicular monoamine transporter (VMAT2) is responsible for the accumulation of monoamines in the synaptic vesicles. VMAT2 differs from the plasma membrane transporters in its capability to recognize serotonin, histamine, norepinephrine and dopamine with almost the same affinity. Dihydrotetrabenazine (TBZOH) is a very potent inhibitor of VMAT2 that binds with high affinity to this transporter. [3H]TBZOH has been used as a ligand to label VMAT2 in human, bovine and rodent brain. In this study we characterized the pharmacodynamic and pharmacokinetic parameters of [3H]TBZOH binding in human platelets as compared to rat brain. The density (Bmax) and affinity (Kd) of [3H]TBZOH specific binding was assessed by Scatchard analysis. Association and dissociation rate constants (k(on), K(off)) were assessed by kinetic binding studies. In this study high-affinity and saturable binding sites for [3H]TBZOH were demonstrated in human platelets. Both the affinity of [3H]TBZOH to its binding site in platelets (Kd = 3.2+/-0.5 nM) and the kinetic rate constants (K(on) = 2.8 x 10(7) M(-1) min(-1); K(off) = 0.099 min(-1)) were similar to that in rat brain (Kd(striatum) = 1.5 nM; Kd(cerebral cortex) = 1.35 nM; K(on) = 2 x 10(7) M(-1) min(-1); K(off) = 0.069 min(-1)). Only the VMAT2 blockers tetrabenazine and reserpine inhibited [3H]TBZOH specific binding.  相似文献   

8.
The present study investigated the effects of levodopa, a precursor of dopamine (DA) therapeutically used for the treatment of Parkinson's disease, on DA transport in the two different systems, COS-7 cells heterologously expressing rat monoamine transporter cDNA and in monoaminergic cell lines PC12 and SK-N-SH. Levodopa enhanced uptake of [3H]DA and [3H]norepinephrine (NE) but not [3H]serotonin in the transfected COS-7 cells in a concentration-dependent manner. On the other hand, in PC12 and SK-N-SH cells where NET is functionally expressed, levodopa enhanced [3H]DA and [3H]NE uptake at low concentrations and inhibited the uptake at higher concentrations. The effects of levodopa on catecholamine transporters in the opposite direction suggest a different mechanism at the intra- and extracellular sites in a levodopa transport-dependent and independent manner.  相似文献   

9.
Abstract: Lobeline, an alkaloid from Indian tobacco (Lobelia inflata), is classified as a nicotinic agonist and is currently used as a smoking cessation agent. However, our previous in vitro studies demonstrate that lobeline does not act as a nicotinic agonist but alters presynaptic dopamine (DA) storage by potently inhibiting DA uptake into synaptic vesicles. Recently, d-amphetamine has been reported to act at the level of the synaptic vesicle to alter presynaptic function. The present in vitro studies further elucidate the mechanism of lobeline's action and compare its effects with those of d-amphetamine. [3H]Dihydrotetrabenazine ([3H]DTBZ), used routinely to probe a high-affinity binding site on the vesicular monoamine transporter (VMAT2), bound to vesicle membranes from rat striatum with a KD of 1.67 nM and Bmax of 8.68 pmol/mg of protein. Lobeline inhibited [3H]DTBZ binding with an IC50 of 0.90 µM, consistent with its previously reported IC50 of 0.88 µM for inhibition of [3H]DA uptake into vesicles. These results suggest that lobeline specifically interacts with DTBZ sites on VMAT2 to inhibit DA uptake into synaptic vesicles. Interestingly, d-amphetamine inhibited [3H]DTBZ binding to vesicle membranes with an IC50 of 39.4 µM, a concentration 20 times greater than reported for inhibition of VMAT2 function, suggesting that d-amphetamine interacts with a different site than lobeline on VMAT2 to inhibit monoamine uptake. Kinetic analysis of [3H]DA release from [3H]DA-preloaded synaptic vesicles in the absence of drug revealed a t1/2 of 2.12 min. Lobeline and d-amphetamine evoked [3H]DA release with EC50 values of 25.3 and 2.22 µM, respectively. At a concentration 10 times the EC50, lobeline and d-amphetamine significantly decreased the t1/2 of [3H]DA release to 1.58 and 1.48 min, respectively. Thus, in contrast to d-amphetamine, which is equipotent in inhibiting DA uptake and promoting release from the synaptic vesicles, lobeline more potently (28-fold) inhibits DA uptake (via an interaction with the DTBZ site on VMAT2) than it evokes DA release to redistribute presynaptic DA storage.  相似文献   

10.
《Fly》2013,7(4):302-305
During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.  相似文献   

11.
One of the pathways implicated in a fine-tuning control of neurosecretory process is the activation of presynaptic receptors. The present study was focused on the role of presynaptic glutamate receptor activation in the regulation of inhibitory synaptic transmission in the rat hippocampus and cortex. We aimed to clarify what types of ionotropic glutamate receptors are involved in the modulation of GABA secretion, and what mechanism underlies this modulation. We have revealed that specific agonists of kainate and NMDA receptors, kainate and NMDA, like glutamate, induced the release of [3H]GABA from hippocampal and cortical nerve terminals suggesting the involvement of both types in the regulation of GABAergic transmission. Our results indicate preferential involvement of vesicular, but not cytosolic, pool in response to glutamate receptor activation. This is based on the finding that NO-711 (a specific inhibitor of plasma membrane GABA transporters), fails to attenuate [3H]GABA release. We have concluded that presynaptic glutamate receptor-induced modulation of the strength of synaptic response is due to increasing the release probability of synaptic vesicles.  相似文献   

12.
Animal and human studies suggest a dopamine-mediated effect of styrene neurotoxicity. To date, mechanisms of cerebral membrane transport of neurotransmitter amines in the presence of styrene in relation to its neurotoxicity have not been addressed properly. So, the present study has examined to test the hypothesis that dopaminergic malfunction in vesicular transport is a critical component in styrene-induced neurotoxicity in rats. Both styrene and its intermediate reactive metabolite, styrene oxide antagonized the in vitro striatal binding of [3H] tyramine, a putative marker of the vesicular transporter for dopamine. Both styrene and styrene oxide potently inhibited the uptake of [3H] dopamine in purified synaptic vesicles prepared from rat brain striata, in a dose-related manner, with inhibitory constants (Ki) 2.5 and 2.2 microM respectively. However, neither styrene nor styrene oxide significantly increased the basal efflux of [3H] dopamine that has been preloaded into striatal vesicles in vitro. On the other hand, both styrene and styrene oxide have failed to significantly inhibit the uptake of either [3H] norepinephrine, or [3H] serotonin into striatal synaptic vesicles. It is concluded that both styrene and styrene oxide are capable of producing impairments in dopaminergic transport in purified striatal synaptic vesicles, an effect which may be a critical component in styrene-induced neurotoxicity.  相似文献   

13.
Summary The hippocampal mossy fiber boutons of the rabbit were studied with phase and electron microscopy. The injection of 3-acetylpyridine, methoxypyridoxine, and reserpine diminishes the conspicuous osmiophilic density of the mossy fiber boutons in comparison to similar regions from nontreated animals as observable in phase microscopy. However, electron micrographs of the same samples show little or no diminution in the number of those synaptic vesicles consisting of a clear homogeneous center (Type I). Treatment with monoamine liberator, reserpine, results in the same cytomorphological appearance of the boutons as with convulsant agents. The number of synaptic dense-core vesicles (Type II) is not altered after treatment with the convulsant agents or reserpine.A certain extra-vesicular substance and a certain granular component of the vesicular membranes of Type I vesicles is progressively reduced after treatment with all of these drugs. It is suggested that this accounts for the decreased density by phase microscopy.The monoamine oxidase inhibitor, iproniazid, increases the density of the extra-vesicular substance as well as the particles attached to the vesicular membranes of Type I vesicles.It is suggested that these osmiophilic particles contain the biogenic monoamines (in this instance probably serotonin and/or histamine) and that in acute experiments the liberation of these neurotransmitters is not related to a disappearence of dense-core vesicles concommitant with a depletion of neurotransmitters but is from particles in the extra-vesicular substance and the granular component of the vesicular of the Type I vesicles.Furthermore, the functional role of zinc in the synaptic vesicles of mossy fiber boutons of the hippocampus is discussed in regard to a possible storage mechanism for biogenic monoamines.This study was partly supported by USPHS Grant 5 P10 ESOO159.  相似文献   

14.
Binding characteristics of the selective dopamine uptake inhibitor [3H]GBR 12935 have been described for the striatum but not for the frontal cortex. We have developed assay conditions for quantifying [3H]GBR 12935 binding in the frontal cortex. In both the rat and human frontal cortex, the assay required four times more tissue (8 mg/ml) than in the striatum (2 mg/ml). [3H]GBR 12935 binding in the frontal is complex, as it involves multiple binding sites. The high-affinity binding site is sodium dependent and is inhibited by sodium. In human but not in rat frontal cortex, addition of K+ reversed the sodium inhibition. The pharmacological profile of the high-affinity [3H]GBR 12935 binding site is consistent with that of the dopamine transporter, because drugs with the most selective dopamine reuptake blocking activities are the most potent displacers of [3H]GBR 12935 binding. There is a positive correlation between the rat and human inhibitory constants, a finding indicating that there are similar pharmacological profiles across at least these two species. Rats with a 6-hydroxydopamine lesion had a 47% decrease in number of [3H]GBR 12935 binding sites, a result indicating that at least a portion of these sites had been on presynaptic dopamine terminals.  相似文献   

15.
16.
The effects of GBR-12909 (selective DA uptake inhibitor), zimelidine (selective 5-HT uptake inhibitor) and nisoxetine (selective NE uptake inhibitor) on the uptake of 30 nM [3H]DA into cultured rat astrocytes were examined. [3H]DA uptake was inhibited by approximately 50% by GBR-12909 or zimelidine in a concentration-dependent manner (100 nM to approximately 10 microM). Furthermore, the inhibition curves of GBR-12909 were biphasic, and uptake was completely inhibited by a high concentration of GBR-12909 (100 microM). [3H]DA uptake was also inhibited by approximately 50% by nisoxetine in a concentration-dependent manner (0.1 to approximately 100 nM), and nisoxetine was more potent than GBR-12909 or zimelidine. The inhibitory potencies were in the order nisoxetine > GBR-12909 > zimelidine. The uptake of [3H]DA under Na+-free conditions was approximately 50% of that under normal conditions. Thus, DA was taken up by both Na+-dependent and Na+-independent mechanisms. Nisoxetine (100 nM), zimelidine (100 microM) and GBR-12909 (10 microM) inhibited [3H]DA uptake into astrocytes only in the presence of Na+. On the other hand, this uptake was completely inhibited by a high concentration of GBR-12909 (100 microM) in the absence of Na+. The present data suggest that the Na+-dependent uptake of [3H]DA in cultured rat astrocytes may occur in the NE uptake system. Furthermore, astrocytes express the extraneuronal monoamine transporter (uptake2), which is an Na+-independent system, and this transporter is involved in the inactivation of centrally released DA.  相似文献   

17.
ACTIVE UPTAKE OF [3H]5-HT BY SYNAPTIC VESICLES FROM RAT BRAIN   总被引:2,自引:0,他引:2  
The question of whether synaptic vesicles accumulate [3H]5-HT by an active process was investigated in a mixed population of vesiclcs from whole rat brain. The temperature dependence and the effect of metabolic inhibitors were studied in synaptosomal suspensions and vesicular fractions. Arrhenius plots for synaptosomes differed from those for vesicles as did the temperature coefficients for these two fractions. For synaptosomes the Q10 was 7 and for vesicles 1.6. However, if ATP was added to the incubation, the temperature dependence of vesicular amine accumulation became manifest; the Arrhenius plot resembled that of synaptosomes and the Q10 was greater than 20 indicating strong temperature dependence. In the presence of ATP, vesicular uptake was stimulated approx 8-fold. Ouabain, dinitrophenol and NEM inhibited synaptosomal uptake but failed to affect [3H]5-HT accumulation by vesicles in the absence of ATP. When ATP was added, vesicular uptake was also blocked by NEM but was unaffected by either ouabain or DNP. Total observed uptake consisted of two components, one ATP-dependent and one nonsaturable and ATP-independent. The active process had a Km= 1.25 × 10?7 M and could be completely blocked by either 10?3 M or 10?7 M-reserpine. Active vesicular [3H]5-HT uptake was magnesium dependent and was inhibited by sodium and potassium. Cation effects on uptake were specific and could not be accounted for by either changes in osmotic pressure or ionic strength. It was concluded that synaptic vesicles from whole rat brain accumulate [3H]5-HT by an active process.  相似文献   

18.
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.  相似文献   

19.
The dopamine transporter (DAT) regulates synaptic dopamine (DA) in striatum and modulation of DAT can affect locomotor activity. Thus, in Parkinson’s disease (PD), DAT loss could affect DA clearance and locomotor activity. The locomotor benefits of L-DOPA may be mediated by transport through monoamine transporters and conversion to DA. However, its impact upon DA reuptake is unknown and may modulate synaptic DA. Using the unilateral 6-OHDA rat PD model, we examined [3H]DA uptake dynamics in relation to striatal DAT and tyrosine hydroxylase (TH) protein loss compared with contralateral intact striatum. Despite >70% striatal DAT loss, DA uptake decreased only ∼25% and increased as DAT loss approached 99%. As other monoamine transporters can transport DA, we determined if norepinephrine (NE) and serotonin (5-HT) differentially modulated DA uptake in lesioned striatum. Unlabeled DA, NE, and 5-HT were used, at a concentration that differentially inhibited DA uptake in intact striatum, to compete against [3H]DA uptake. In 6-OHDA lesioned striatum, DA was less effective, whereas NE was more effective, at inhibiting [3H]DA uptake. Furthermore, norepinephrine transporter (NET) protein levels increased and desipramine was ∼two-fold more effective at inhibiting NE uptake. Serotonin inhibited [3H]DA uptake, but without significant difference between lesioned and contralateral striatum. L-DOPA inhibited [3H]DA uptake two-fold more in lesioned striatum and inhibited NE uptake ∼five-fold more than DA uptake in naïve striatum. Consequently, DA uptake may be mediated by NET when DAT loss is at PD levels. Increased inhibition of DA uptake by L-DOPA and its preferential inhibition of NE over DA uptake, indicates that NET-mediated DA uptake may be modulated by L-DOPA when DAT loss exceeds 70%. These results indicate a novel mechanism for DA uptake during PD progression and provide new insight into how L-DOPA affects DA uptake, revealing possible mechanisms of its therapeutic and side effect potential.  相似文献   

20.
Gasnier B 《Biochimie》2000,82(4):327-337
Classical (non-peptide) transmitters are stored into secretory vesicles by a secondary active transporter driven by a V-type H(+)-ATPase. Five vesicular neurotransmitter uptake activities have been characterized in vitro and, for three of them, the transporters involved have been identified at the molecular level using cDNA cloning and/or Caenorhabditis elegans genetics. These transporters belong to two protein families, which are both unrelated to the Na(+)-coupled neurotransmitter transporters operating at the plasma membrane. The two isoforms of the mammalian vesicular monoamine transporter, VMAT1 and VMAT2, are related to the vesicular acetylcholine transporter (VACHT), while a novel, unrelated vesicular inhibitory amino acid transporter (VIAAT), also designated vesicular GABA transporter (VGAT), is responsible for the storage of GABA, glycine or, at some synapses, both amino acids into synaptic vesicles. The observed effects of experimentally altered levels of VACHT or VMAT2 on synaptic transmission and behavior, as well as the recent awareness that GABAergic or glutamatergic receptors are not always saturated at central synapses, suggest a potential role of vesicular loading in synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号