首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Glypicans are multifunctional proteoglycans with regulatory roles in several intercellular signaling pathways. Here, we examine the functional requirements for glypican regulation of bone morphogenetic protein (BMP)-mediated body length in C. elegans. We provide evidence that two parts of C. elegans glypican LON-2 can independently inhibit BMP signaling in vivo: the N-terminal furin protease product and the C-terminal region containing heparan sulfate attachment sequences. While the C-terminal protease product is dispensable for LON-2 minimal core protein activity, it does affect the localization of LON-2. Cleavage of LON-2 into two parts at the conserved furin protease site is not required for LON-2 to inhibit BMP-like signaling. The glycosyl-phosphatidylinositol (GPI) membrane anchor is also not absolutely required for LON-2 activity. Finally, we show that an RGD protein-protein interaction motif in the LON-2 N-terminal domain is necessary for LON-2 core protein activity, suggesting that LON-2 inhibits BMP signaling by acting as a scaffold for BMP and an RGD-binding protein.  相似文献   

2.
Using cDNA-based array analysis combined with double-stranded RNA interference (dsRNAi), we have identified yk298h6 as a target gene of Caenorhabditis elegans TGF-beta signaling. Worms overexpressing dbl-1, a TGF-beta ligand, are 16% longer than wild type. Array analysis shows yk298h6 to be one of several genes suppressed in such worms. Disruption of yk298h6 function by dsRNAi also resulted in long worms, suggesting that it is a negative regulator of body length. yk298h6 was then mapped to, and shown to be identical to, lon-1, a known gene that affects body length. lon-1 encodes a 312 amino acid protein with a motif sequence that is conserved from plants to humans. Expression studies confirm that LON-1 is repressed by DBL-1, suggesting that LON-1 is a novel downstream component of the C.elegans TGF-beta growth regulation pathway. Consistent with this, LON-1 is expressed mainly in the larval and adult hypodermis and has dose-dependent effects on body length associated with changes in hypodermal ploidy, but not hypodermal cell proliferation.  相似文献   

3.
Netrin is a key axon guidance cue that orients axon growth during neural circuit formation. However, the mechanisms regulating netrin and its receptors in the extracellular milieu are largely unknown. Here we demonstrate that in Caenorhabditis elegans, LON-2/glypican, a heparan sulfate proteoglycan, modulates UNC-6/netrin signaling and may do this through interactions with the UNC-40/DCC receptor. We show that developing axons misorient in the absence of LON-2/glypican when the SLT-1/slit guidance pathway is compromised and that LON-2/glypican functions in both the attractive and repulsive UNC-6/netrin pathways. We find that the core LON-2/glypican protein, lacking its heparan sulfate chains, and secreted forms of LON-2/glypican are functional in axon guidance. We also find that LON-2/glypican functions from the epidermal substrate cells to guide axons, and we provide evidence that LON-2/glypican associates with UNC-40/DCC receptor–expressing cells. We propose that LON-2/glypican acts as a modulator of UNC-40/DCC-mediated guidance to fine-tune axonal responses to UNC-6/netrin signals during migration.  相似文献   

4.
C. elegans cdf-1 was identified in a genetic screen for regulators of Ras-mediated signaling. CDF-1 is a cation diffusion facilitator protein that is structurally and functionally similar to vertebrate ZnT-1. These proteins have an evolutionarily conserved function as positive regulators of the Ras pathway, and the Ras pathway has an evolutionarily conserved ability to respond to CDF proteins. CDF proteins regulate Ras-mediated signaling by promoting Zn(2+) efflux and reducing the concentration of cytosolic Zn(2+), and cytosolic Zn(2+) negatively regulates Ras-mediated signaling. Physiological concentrations of Zn(2+) cause a significant inhibition of Ras-mediated signaling. These findings suggest that Zn(2+) negatively regulates a conserved element of the signaling pathway and that Zn(2+) regulation is important for maintaining the inactive state of the Ras pathway.  相似文献   

5.
6.
Jia K  Levine B 《Autophagy》2007,3(6):597-599
Dietary restriction extends life span in diverse species including Caenorhabditis elegans. However, the downstream cellular targets regulated by dietary restriction are largely unknown. Autophagy, an evolutionary conserved lysosomal degradation pathway, is induced under starvation conditions and regulates life span in insulin signaling C. elegans mutants. We now report that two essential autophagy genes (bec-1 and Ce-atg7) are required for the longevity phenotype of the C. elegans dietary restriction mutant (eat-2(ad1113) animals. Thus, we propose that autophagy mediates the effect, not only of insulin signaling, but also of dietary restriction on the regulation of C. elegans life span. Since autophagy and longevity control are highly conserved from C. elegans to mammals, a similar role for autophagy in dietary restriction-mediated life span extension may also exist in mammals.  相似文献   

7.
8.
9.
We previously proposed a model that DALLY, a Drosophila glypican, acts as a trans co-receptor to regulate BMP signaling in the germ line stem cell niche. To investigate the molecular mechanisms of contact-dependent BMP signaling, we developed novel in vitro assay systems to monitor trans signaling using Drosophila S2 cells. Using immunoblot-based as well as single-cell assay systems, we present evidence that Drosophila glypicans indeed enhance BMP signaling in trans in a contact-dependent manner in vitro. Our analysis showed that heparan sulfate modification is required for the trans co-receptor activity of DALLY. Two BMP-like molecules, Decapentaplegic (DPP) and Glass bottom boat, can mediate trans signaling through a heparan sulfate proteoglycan co-receptor in S2 cells. The in vitro systems reflect the molecular characteristics of heparan sulfate proteoglycan functions observed previously in vivo, such as ligand specificity and biphasic activity dependent on the ligand dosage. In addition, experiments using a DALLY-coated surface suggested that DALLY regulates DPP signaling in trans by its effect on the stability of DPP protein on the surface of the contacting cells. Our findings provide the molecular foundation for novel contact-dependent signaling, which defines the physical space of the stem cell niche in vivo.  相似文献   

10.
Body length in C. elegans is regulated by a member of the TGFbeta family, DBL-1. Loss-of-function mutations in dbl-1, or in genes encoding components of the signaling pathway it activates, cause worms to be shorter than wild type and slightly thinner (Sma). Overexpression of dbl-1 confers the Lon phenotype characterized by an increase in body length. We show here that loss-of-function mutations in dbl-1 and lon-1, respectively, cause a decrease or increase in the ploidy of nuclei in the hypodermal syncytial cell, hyp7. To learn more about the regulation of body length in C. elegans we carried out a genetic screen for new mutations causing a Lon phenotype. We report here the cloning and characterization of lon-3. lon-3 is shown to encode a putative cuticle collagen that is expressed in hypodermal cells. We show that, whereas putative null mutations in lon-3 (or reduction of lon-3 activity by RNAi) causes a Lon phenotype, increasing lon-3 gene copy number causes a marked reduction in body length. Morphometric analyses indicate that the lon-3 loss-of-function phenotype resembles that caused by overexpression of dbl-1. Furthermore, phenotypes caused by defects in dbl-1 or lon-3 expression are in both cases suppressed by a null mutation in sqt-1, a second cuticle collagen gene. However, whereas loss of dbl-1 activity causes a reduction in hypodermal endoreduplication, the reduction in body length associated with overexpression of lon-3 occurs in the absence of defects in hypodermal ploidy.  相似文献   

11.
In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.  相似文献   

12.
SMK-1, an essential regulator of DAF-16-mediated longevity   总被引:12,自引:0,他引:12  
Wolff S  Ma H  Burch D  Maciel GA  Hunter T  Dillin A 《Cell》2006,124(5):1039-1053
  相似文献   

13.
Cells and organisms face anoxia in a wide variety of contexts, including ischemia and hibernation. Cells respond to anoxic conditions through multiple signaling pathways. We report that NSY-1, the Caenorhabditis elegans ortholog of mammalian apoptosis signal-regulating kinase (ASK) family of MAP kinase (MAPK) kinase kinases (MAP3Ks), regulates viability of animals in anoxia. Loss-of-function mutations of nsy-1 increased survival under anoxic conditions, and increased survival was also observed in animals with mutations in tir-1 and the MAPK kinase (MAP2K) sek-1, which are upstream and downstream factors of NSY-1, respectively. Consistent with these findings, anoxia was found to activate the p38 MAPK ortholog PMK-1, and this was suppressed in nsy-1 and tir-1 mutant animals. Furthermore, double-mutant analysis showed that the insulin-signaling pathway, which also regulates viability in anoxia, functioned in parallel to NSY-1. These results suggest that the TIR-1-NSY-1-SEK-1-PMK-1 pathway plays important roles in the reponse to anoxia in C. elegans.  相似文献   

14.
In the nematode Caenorhabditis elegans, a TGFbeta-related signaling pathway regulates body size and male tail morphogenesis. We sought to identify genes encoding components or modifiers of this pathway in a large-scale genetic screen. Remarkably, this screen was able to identify essentially all core components of the TGFbeta signaling pathway. Among 34 Small mutants, many mutations disrupt genes encoding recognizable components of the TGFbeta pathway: DBL-1 ligand, DAF-4 type II receptor, SMA-6 type I receptor, and SMA-2, SMA-3, and SMA-4 Smads. Moreover, we find that at least 11 additional complementation groups can mutate to the Small phenotype. Four of these 11 genes, sma-9, sma-14, sma-16, and sma-20 affect male tail morphogenesis as well as body size. Two genes, sma-11 and sma-20, also influence regulation of the developmentally arrested dauer larval stage, suggesting a role in a second characterized TGFbeta pathway in C. elegans. Other genes may represent tissue-specific factors or parallel pathways for body size control. Because of the conservation of TGFbeta signaling pathways, homologs of these genes may be involved in tissue specificity and/or crosstalk of TGFbeta pathways in other animals.  相似文献   

15.
The anosmin-1 protein family regulates cell migration, axon guidance, and branching, by mechanisms that are not well understood. We show that the C. elegans anosmin-1 ortholog KAL-1 promotes migrations of ventral neuroblasts prior to epidermal enclosure. KAL-1 does not modulate FGF signaling in neuroblast migration and acts in parallel to other neuroblast migration pathways. Defects in heparan sulfate (HS) synthesis or in specific HS modifications disrupt neuroblast migrations and affect the KAL-1 pathway. KAL-1 binds the cell surface HS proteoglycans syndecan/SDN-1 and glypican/GPN-1. This interaction is mediated via HS side chains and requires specific HS modifications. SDN-1 and GPN-1 are expressed in ventral neuroblasts and have redundant roles in KAL-1-dependent neuroblast migrations. Our findings suggest that KAL-1 interacts with multiple HSPGs to promote cell migration.  相似文献   

16.
An insulin-like signaling pathway regulates development and lifespan in Caenorhabditis elegans. Genetic screens that identified many components of the C. elegans insulin pathway did not identify homologs of insulin receptor substrates or the phosphoinositide 3-kinase (PI3K) adaptor/regulatory subunit, which are both required for signaling by mammalian insulin/insulin-like growth factor I pathways. The C. elegans genome contains one homolog of each protein. The C. elegans versions of insulin receptor substrate (IST-1) and PI3K p50/p55 (AAP-1) share moderate sequence similarity with their vertebrate and Drosophila counterparts. Genetic experiments show that ist-1 and aap-1 potentiate C. elegans insulin-like signaling, although they are not required for signaling in the pathway under most conditions. Worms lacking AAP-1 activity because of the mutation aap-1(m889) constitutively arrest development at the dauer larval stage when raised at high temperatures. aap-1 mutants also live longer than wild-type animals, a phenotype observed in other C. elegans mutants with defects in DAF-2 signaling. Interestingly, IST-1 appears to be required for signaling through a pathway that may act in parallel to AGE-1/PI3K.  相似文献   

17.
Ji YJ  Nam S  Jin YH  Cha EJ  Lee KS  Choi KY  Song HO  Lee J  Bae SC  Ahnn J 《Developmental biology》2004,274(2):402-412
The rnt-1 gene is the only Caenorhabditis elegans homologue of the mammalian RUNX genes. Several lines of molecular biological evidence have demonstrated that the RUNX proteins interact and cooperate with Smads, which are transforming growth factor-beta (TGF-beta) signal mediators. However, the involvement of RUNX in TGF-beta signaling has not yet been supported by any genetic evidence. The Sma/Mab TGF-beta signaling pathway in C. elegans is known to regulate body length and male tail development. The rnt-1(ok351) mutants show the characteristic phenotypes observed in mutants of the Sma/Mab pathway, namely, they have a small body size and ray defects. Moreover, RNT-1 can physically interact with SMA-4 which is one of the Smads in C. elegans, and double mutant animals containing both the rnt-1(ok351) mutation and a mutation in a known Sma/Mab pathway gene displayed synergism in the aberrant phenotypes. In addition, lon-1(e185) mutants was epistatic to rnt-1(ok351) mutants in terms of long phenotype, suggesting that lon-1 is indeed downstream target of rnt-1. Our data reveal that RNT-1 functionally cooperates with the SMA-4 proteins to regulate body size and male tail development in C. elegans.  相似文献   

18.
Vulval development in Caenorhabditis elegans serves as an excellent model to examine the crosstalk between different conserved signaling pathways that are deregulated in human cancer. The concerted action of the RAS/MAPK, NOTCH, and WNT pathways determines an invariant pattern of cell fates in three vulval precursor cells. We have discovered a novel form of crosstalk between components of the Insulin and the RAS/MAPK pathways. The insulin receptor DAF-2 stimulates, while DAF-18 PTEN inhibits, RAS/MAPK signaling in the vulval precursor cells. Surprisingly, the inhibitory activity of DAF-18 PTEN on the RAS/MAPK pathway is partially independent of its PIP(3) lipid phosphatase activity and does not involve further downstream components of the insulin pathway, such as AKT and DAF-16 FOXO. Genetic and biochemical analyses indicate that DAF-18 negatively regulates vulval induction by inhibiting MAPK activation. Thus, mutations in the PTEN tumor suppressor gene may result in the simultaneous hyper-activation of two oncogenic signaling pathways.  相似文献   

19.
Wishful thinking (Wit) is a Drosophila transforming growth factor-beta (TGFbeta) superfamily type II receptor most related to the mammalian bone morphogenetic protein (BMP) type II receptor, BMPRII. To better understand its function, we undertook a biochemical approach to establish the ligand binding repertoire and downstream signaling pathway. We observed that BMP4 and BMP7, bound to receptor complexes comprised of Wit and the type I receptor thickveins and saxophone to activate a BMP-like signaling pathway. Further we demonstrated that both myoglianin and its most closely related mammalian ligand, myostatin, interacted with a Wit and Baboon (Babo) type II-type I receptor complex to activate TGFbeta/activin-like signaling pathways. These results thereby demonstrate that Wit binds multiple ligands to activate both BMP and TGFbeta-like signaling pathways. Given that myoglianin is expressed in muscle and glial-derived cells, these results also suggest that Wit may mediate myoglianin-dependent signals in the nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号