首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil drenches of 250, 500 or 1000 mg/l of the growth retardants AMO-1618 or B-995 effectively reduced dry matter production and stem elongation in young seedlings of Cupressus arizonica Greene. In seedlings treated with AMO-1618, the acidic, ethyl acetate-soluble gibberellin-like substances (GAs), as detected. by bioassay, were reduced to almost undetectable levels. However, the endogenous GA content in seedlings treated with B-995 were at least 11-fold greater than in control seedlings and differed as well in chromatographic characteristics, being of a more polar nature than the endogenous GAs of control seedlings. It was concluded that while AMO-1618 probably acts through interference with GA biosynthesis, B-995 may act through the interconversion of GAs.  相似文献   

2.
Chromatin isolated from control, AMO-1618 [2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidine carboxylate] and gibberellic acid (GA) treated soybean hypocotyl tissue incorporates labeled nucleoside triphosphates into acid-insoluble RNA. Gibberellic acid, sprayed on intact soybean hypocotyls, is shown to have enhanced the level of chromatin RNA polymerase activity while chromatin isolated from hypocotyls pretreated with AMO-1618 exhibits a lower polymerase activity relative to the control. Chromatin extracted from the treated or untreated seedlings are all sensitive to the inhibition (in varying degrees) by the presence of actinomycin D, pyrophosphate, or ribonuclease. Thus enhanced (or decreased) RNA-synthesizing capacity of chromatin in response to chemical treatments may be due to enhanced (or decreased) synthesis of RNA polymerase.  相似文献   

3.
Experiments were carried out to explore the involvement of the plant hormone gibberellin (GA) in the light-induced germination of lettuce seeds. Three growth retardants known to be inhibitors of GA biosynthesis were tested for their effect on red-light-induced germination. Chlormequat chloride (CCC) and AMO-1618 had no effect, but ancymidol was strongly inhibitory. Moreover, the inhibition caused by ancymidol was completely overcome by GA3. CCC and AMO-1618 inhibit the formation ofent-kaurene, while ancymidol blocks the oxidation ofent-kaurene toent-kaurenoic acid. Ancymidol also was found to inhibit GA-induced dark germination of lettuce seeds, and this inhibition was partially reversed by higher levels of GA. Therefore, the results suggest two possibilities for the relationship between phytochrome and GA in this system: first, the rate-limiting step in the germination of light-sensitive lettuce seeds, that which is regulated by phytochrome, is the oxidation ofent-kaurene toent-kaurenoic acid. Alternatively, red-light treatment may result in the release of active GAlike substances which, in turn, induce germination. In either case the results presented here support the view that phytochrome exerts its effect on lettuce seed germination by means of GA rather than via an independent pathway.  相似文献   

4.
5.
Monselise , S. P., and A. H. Halevy . (Hebrew U., Rehovot, Israel.) Effects of gibberellin and AMO–1618 on growth, dry-matter accumulation, chlorophyll content and peroxidase activity of citrus seedlings. Amer. Jour. Bot. 49(4): 405–412. Illus. 1962.—Sweet-lime seedlings, 6 months old, were sprayed with gibberellic acid (GA) and a growth retardant, AMO–1618, alone and in combination, at concentrations ranging between SO and 1600 ppm. Increasing concentrations of GA progressively increased shoot and internode length, did not influence number of leaves, and decreased leaf area. Dry weight of shoots was progressively increased up to 400 ppm, while dry weights of leaves and roots were decreased over all GA concentrations. Total dry weight of plants was increased by GA when related to leaf area or weight and to total chlorophyll content, which indicates a higher synthetic efficiency of leaves. This could not be detected by manometric determinations using leaf discs. It is suggested that a short determination period and/or work with detached leaves are responsible for failures to detect increased photosynthetic activity of GA-treated leaves. Chlorophyll content of leaves was decreased by increasing GA concentrations; it is shown that this is not due to “dilution” over a larger area of leaves. Peroxidase activity of leaves was only slightly reduced by GA, while it was increased by AMC–1618, acting as antagonist to GA. This is remarkable, since AMO–1618 did not clearly affect other procperties of citrus seedlings which are only slightly responsive to this chemical.  相似文献   

6.
Rajinder S. Dhindsa 《Planta》1978,141(3):269-272
The effects of 5-bromo-2-deoxyuridine (BUdR, thymidine analogue), AMO-1618 (2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride), a growth retardant, and p-chlorophenoxyisobutyric acid (PCIB, an antiauxin) on growth (dry weight increase) and fiber development in unfertilized cotton (Gossypium hirsutum L.) ovules grown in vitro have been studied. BUdR (5 M) causes about 70% inhibition of fiber production, with little effect on ovule growth, if applied during the first 6 d of culture in the presence of GA3 and IAA. AMO-1618, when used with GA3 alone, causes only a small reduction in both dry weight and fiber production, but when used with IAA alone reduces both fiber production and dry weight, the effect on the latter being predominant. In the presence of both IAA and GA3, AMO-1618 causes a small decrease in fiber production but a major decrease in dry weight. PCIB completely inhibits fiber growth but has little effect on dry weight, especially when GA3 is present. These results indicate that GA3 mainly promotes ovule growth while IAA is largerly responsible for fiber growth.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride - BUdR 5-bromo-2-deoxyuridine - GA3 gibberellic acid - IAA indole-3-acetic acid - PCIB p-chlorophenoxyisobutyric acid - TFU total fiber units  相似文献   

7.
The physiological basis of dwarfism in a single-gene, recessive mutant of Silene armeria L. was investigated through comparison with a normal strain. Exposure of the normal strain to long days led to stem growth and flower formation while similar exposure of the dwarf strain led only to flowering, with very little stem growth. Application of gibberellin A3 or A4+7 in short days promoted stem elongation in the normal strain, but had a much lesser effect in the dwarf strain. Upon extraction and chromatographic fractionation of the endogenous gibberellins (GAs) in the normal strain of S. armeria, three zones of GA activity were found. An increase in one zone of activity was found in both strains after 1 long day. Neither the quality nor the quantity of the extractable GAs differed greatly between the dwarf and the normal strain. Vegetative dwarf scions, grafted onto fully induced, normal stocks formed flowers, but their growth habit was not changed. Thus, the lack of stem growth in response to long days in the dwarf strain appears to result from a lack of GA sensitivity in the stem tissue of these plants. However, during flower formation dwarf plants did exhibit elongation of the peduncles. This response was suppressed by the growth retardant 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618), and applied GA3 could partially overcome this inhibition. Thus, peduncle elongation in the dwarf strain appears to be regulated by endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - SD short day(s)  相似文献   

8.
When gibberellic acid (GA3; 5-35 micrograms per milliliter) is sprayed on 9-day-old light-grown dwarf Progress pea (Pisum sativum) seedlings, it causes a marked increase in the activity of arginine decarboxylase (ADC; EC 4.1.1.9) in the fourth internodes. The titer of putrescine and spermidine, polyamines produced indirectly as a result of ADC action, also rises markedly, paralleling the effect of GA3 on internode growth. Ammonium (5-hydroxycarvacryl) trimethyl chloride piperidine carboxylate (AMO-1618; 100-200 micrograms per milliliter) causes changes in the reverse direction for enzyme activity, polyamine content, and growth. GA3 also reverses the red-light-induced inhibition of ADC activity in etiolated Alaska pea epicotyls; this is additional evidence for gibberellin-light interaction in the control of polyamine biosynthesis. The enzyme ornithine decarboxylase (ODC; EC 4.1.1.17), an alternate source of putrescine arising from arginine, is not increased by GA3 or by AMO-1618.  相似文献   

9.
The effect of growth retarding compounds, (2-chloroethyl)trimethylammonium chloride (CCC), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidinecarboxylate methyl chloride (AMU-1618), tributyl-2,4-dichlorobenzylphosphonium chloride (Phosfon D) and N-dimethylamino succinamic acid (B-995) on α-amylase production in germinating barley seed was studied. Seeds were germinated in growth retardants in presence and absence of gibberellic acid (GA3). CCC, AMO-1618 and Phosfon D inhibitedα-amylase production in germinating seed and the effect was reversed by GA3 Phosfon D and AMO-1618 were stronger inhibitors of α-amylase production than CCC. CCC was by far the strongest inhibitor of all the other analogs tested. B-995 was comparatively only slightly inhibitory. The results reported here, when viewed in light of the results of other workers, provide good evidence that CCC, AMO-1618 and Phosfon D inhibit α-amylase production by inhibiting the synthesis of gibberellin or gibberellin-like hormone(s) during germination of barley seed. Consistent with other reports, B-995 possibly acts by other mechanism (s).  相似文献   

10.
Terminal buds of dark-grown pea (Pisum sativum) seedlings have an indole-3-acetic acid oxidase which does not require Mn(2+) and 2,4-dichlorophenol as cofactors. Oxidase activity is at least 50 times higher in buds of tall peas than in dwarf seedlings. Administration of gibberellic acid to dwarf peas stimulates both growth and indoleacetic acid oxidase activity to the same levels as in tall seedlings. By contrast, indoleacetic acid oxidation assayed in the presence of Mn(2+) and 2,4-dichlorophenol proceeds at similar rates regardless of gibberellin application. Treatment of tall peas with the growth retardant AMO-1618 reduces growth and oxidase activity. Such treated seedlings are indistinguishably dwarf. The enzyme does not appear to be polyphenol oxidase, nor do the results suggest that reduced activity in dwarf buds is due to higher levels of a dialyzable inhibitor. The peroxidative nature of the oxidase is probable.  相似文献   

11.
Growth and peroxidase activity of roots and stems of lentil seedlings were compared after treatment with Amo-1618, alone or in combination with gibberellic acid (GA) at varying concentrations. The peroxidase enhancement in Amo-1618 treated stems could not be attributed to a decrease in the gibberellin content since GA alone had no effect on this enzyme. In other experiments, AMO, at low concentrations, was able to induce α-amylase production in barley aleurone layers; the lag period needed for this induction, was longer than for GA. These facts seem to indicate that some growth retardants might act at least in some cases by mechanisms other than inhibition of gibberellin biosynthesis and reversal of GA action.  相似文献   

12.
Agrostemma githago is a long-day rosette plant in which transfer from short days (SD) to long days (LD) results in rapid stem elongation, following a lag phase of 7–8 d. Application of gibberellin A20 (GA20) stimulated stem elongation in plants under SD, while 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride (AMO-1618, an inhibitor of GA biosynthesis) inhibited stem elongation in plants exposed to LD. This inhibition of stem elongation by AMO-1618 was overcome by simultaneous application of GA20, indicating that GAs play a role in the photoperiodic control of stem elongation in this species. Endogenous GA-like substances were analyzed using reverse-phase high-performance liquid chromatography and the d-5 corn (Zea mays L.) assay. Three zones with GA-like activity were detected and designated, in order of decreasing polarity, as A, B, and C. A transient, 10-fold increase in the activity of zone B occurred after 8–10 LD, coincident with the transition from lag phase to the phase of rapid stem elongation. After 16 LD the activity in this zone had returned to a level similar to that under SD, even though the plants were elongating rapidly by this time. However, when AMO-1618 was applied to plants after 11 LD, there was a rapid reduction in the rate of stem elongation, indicating that continued GA biosynthesis was necessary following the transient increase in activity of zone B, if stem elongation was to continue under LD. It was concluded that control of stem elongation in A. githago involves more than a simple qualitative or quantitative change in the levels of endogenous GAs, and that photoperiodic induction alters both the sensitivity to GAs and the rate of turnover of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - LD long day(s) - LDP long-day plant(s) - SD short day(s)  相似文献   

13.
Young seedlings of Picea abies Karst, grown in nutrient solution were treated with the growth retardants Amo-1618, B-995, and CCC. These were added to the nutrient medium. B-995 and CCC retarded root and shoot growth in the concentrations 100, 10, and 1 mg/l. Growth was almost entirely inhibited by 300 mg/l, obviously due to toxicity. The effects of Amo-1618 were similar but more varying. GA counteracted the effects of all the retardants on shoot growth, but not on root growth.  相似文献   

14.
Cucumber seedlings were grown in darkness on filter paper saturatedwith water, gibberellin (GA), growth-retarding chemicals (mainlyAmo-1618) or both GA and Amo-1618. The effects on oxygen consumptionand catalase activity were studied on cotyledons, radicles,and hypocotyl tips. GA increased respiration and catalase activity of hypocotyland cotyledons, decreased radicle respiration, and had no significanteffect on its catalase activity. Amo-1618 decreased respirationof hypocotyl and cotyledons and increased that of the radicles.It stimulated catalase activity in all three organs. The inverse effects of GA and Amo-1618 on oxygen uptake andcatalase activity were mutually antagonized when both compoundswere applied at concentrations counteracting their oppositeeffects on hypocotyl elongation. No stimulating effect on catalase activity was found with mostother growth-retarding chemicals. Some of them had no significanteffect on the enzyme, and one even decreased its activity.  相似文献   

15.
N. Okagami  Y. Esashi  M. Nagao 《Planta》1977,136(1):1-6
Gibberellic-acid (GA3) treatment, when applied within a period ranging from the start of short-day (SD) treatment until about 10 SD, GA3 strongly inhibited formation of aerial tubers in response to SD and brought about sprouting of developing aerial tubers. In contrast, when applied after about 10 SD or more, GA3 hastened the completion of the dormant state in the tubers and prolonged their dormancy. The dormancy-promoting effect of GA3 on detached tubers increased with their degree of maturation. Application of growth retardants N-dimethylaminosuccinamic acid (B-9), 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine carboxylate methyl chloride (AMO-1618) and 2-chloroethyltrimethylammonium chloride (CCC) to the cuttings delayed the onset of dormancy in the aerial tuber. When the retardants were applied to detached aerial tubers, however, such a delay of dormancy was not observed, and GA3 application did not inhibit sprouting in aerial tubers detached from CCC-treated cuttings.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short day(s) - LD long day(s) - SDP short-day plant - LDP long-day plant - CCC 2-chloroethyltrimethylammonium chloride - B-9 N-dimethylaminosuccinamic acid - AMO-1618 2-isopropyl-4-dimethyl-amino-5-methylphenyl-1-piperidine carboxylate methyl chloride  相似文献   

16.
The effects of diphenylamine, dimethyl sulfoxide, streptomycin, AMO-1618, and beta-ionone on the carotene composition of a wild-type and three mutant strains of Phycomyces blakesleeanus have been examined. Diphenylamine increased the phytoene and phytofluene concentrations of all strains while reducing the levels of the color carotenes. Dimethyl sulfoxide reduced the concentration of both cyclic and acyclic carotenes, whereas AMO-1618 increased the levels of all carotenes in all the strains. The wild type and mutants responded differently to the presence of streptomycin and beta-ionone. The possible mode of action of the above agents on carotenoid biosynthesis is discussed.  相似文献   

17.
Senescence of shoot apices of Pisum sativum L. ‘Alaska’ as measured by cessation of stem elongation was delayed by removal of flowers and by treatment with gibberellin A3 and was hastened by treatment with AMO-1618 (2 isopropyl-4-dimethylamino-5-methylphenyl-1-piperi-dinecarboxylate methyl chloride). Ontogenetic changes in relative endogenous gibberellin levels and in capability of gibberellin biosynthesis in deflowered and control plants were determined indirectly by studying time-course changes in the sensitivity, as indicated by the growth response, of these plants to applied gibberellin and AMO-1618. The results of these experiments suggest that the endogenous gibberellin level varies directly with the growth rate. Analyses of total RNA and protein in shoot tips of deflowered and control plants revealed that the levels of these substances also vary directly with growth rate throughout ontogeny. It is concluded that decreases in endogenous gibberellin, RNA and protein are factors correlated with senescence of the shoot apex.  相似文献   

18.
Rate of extension growth, as measured by height, of 2-month-old Valencia orange trees (Citrus sinensis (L.) Osbeck) on rough lemon rootstock (C. limon Burm. f.) was reduced to 0.5 mm from 5.0 mm day–1 with 0.1% (w/v) sprays of the growth retardant AMO-1618 (4 hydroxy-5-isopropyl-2-methyl phenyl trimethyl-ammonium chloride, 1 piperdine carboxylate) every 2 weeks during 11 weeks under natural daylight in a glasshouse. Trees sprayed with AMO-1618 were 10-fold shorter, more compact in appearance, and leaves were greener and more oval shaped than those on untreated trees. There was no chemical burn. AMO-1618-sprayed trees were more cold hardy than untreated trees during controlled-temperature, cold-hardening regimes. Alone, AMO-1618 had no effect on freeze tolerance at -5.5° C. AMO-1618 also was associated with greater tree tolerance to freeze injury determined by O2 uptake in Valencia leaves to as low as -6.7° C.This paper reports the results of research only. Mention of a trademark of a proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

19.
Summary Loss of apical dominance in soybeans and redwood was increased when the plants were treated with the growth retardant AMO-1618. Simultaneous application of gibberellin reduced the number of elongating buds and promoted growth of the first or second uppermost axillary bud, thus restoring apical dominance. It is concluded that gibberellin participates in the expression of apical dominance.  相似文献   

20.
"Baccara" rose buds were treated with various growth regulatorsduring late stages of bud development. The effect of these substanceson growth and pigmentation were determined. Growth regulatorswere applied by spray or injection or as a lanolin paste, alsoin the nutrient media on which petals were cultured in vitro.Injection of GA into the base of the receptacle caused elongationof the bud whereas IAA, K, ABA, AMO-1618, CCC, and SADH hadlittle or no effect. CCC and MeCl-F did not reduce the elongationcaused by GA. GA treatments also enhanced flower weight andpetal pigmentation and MeCl-F decreased the gibberellin effecton pigmentation. GA treatments of intact flowers and excisedpetals cultured in vitro, were only effective at low temperatures. Gibberellin treatments increased the size of petals, the receptacleand the pedicel only if applied directly to the receptacle.Treatments at lower positions on the flowering shoot eitherhad no effect at all, or caused elongation of only the receptacle. Endogenous gibberellin levels are higher in the receptacle thanin petals or in the pedicel. Injection of GA into the receptaclesignificantly increased gibberellin activity in all flower partswhereas injection into the flowering-shoot base increased gibberellinactivity only in the receptacle. The possibility is discussed that GA, which is exogenously supplieddirectly to the receptacle, enhances flower dimensions and pigmentationby drawing photosynthates to the flower as a consequence ofintensification of the sink. (Received August 17, 1973; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号