首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Technological advances in the 1970s encouraged the mapping of homologous gene loci in different mammalian species, including mouse and man. One hundred eighty-five homologous loci have now been mapped in these two species. Conservation of linkage is sufficient to identify substantial segments of the two genomes that have been left intact since their divergence from a common ancestor. The recognition of these conserved segments allows experimental manipulation of mouse chromosomes or chromosomal regions to produce models of human chromosomal anomalies of medical importance. Comparative gene mapping has been extended beyond mouse and man and the genomes of some species, including domestic cattle, appear to be more highly conserved relative to humans than the mouse. Such species may be particularly useful in providing models of human chromosomal anomalies that cannot be duplicated in laboratory mice.  相似文献   

2.
By means of cross-reacting molecular probes, some 18 loci specific for the X chromosome of both man and mouse have been localized on the mouse X chromosome using an interspecific mouse cross involving the inbred SPE/Pas strain derived from Mus spretus. Comparison of the localizations of these loci on the mouse X with their positions on the human X chromosome suggests that intrachromosomal rearrangements involving at least five X chromosome breakage events must have occurred during the period of evolutionary divergence separating primates from rodents. Within the five blocks of chromosomal material so defined, there is for the moment little or no evidence that either chromosomal inversion events or extensive rearrangements have occurred. These data confirm the remarkable evolutionary conservation of the X chromosome apparent in mammalian species, compared to autosomal synteny groups in which both inter- and intrachromosomal rearrangement events appear to have occurred frequently. The breakage events described here for the X chromosome should therefore provide a minimal estimate for the frequency of chromosomal rearrangement events, such as breakage and inversion, which have affected autosomal synteny groups during the evolutionary period separating man from mouse. The definition of the number of chromosome breakage events by which the X chromosomes of these species differ, together with their localization, provides a framework for the use of interspecies mouse crosses for further detailed mapping of particular subchromosomal regions of the human X chromosome and for defining loci in the mouse homologous to those implicated in human congenital diseases.  相似文献   

3.
The chromosomal locations of mouse DNA sequences homologous to a feline cDNA clone encoding glutamic acid decarboxylase (GAD) were determined. Although cats and humans are thought to have only one gene for GAD, GAD cDNA sequences hybridize to two distinct chromosomal loci in the mouse, chromosomes 2 and 10. The chromosomal assignment of sequences homologous to GAD cDNA was determined by Southern hybridization analysis using DNA from mouse-hamster hybrid cells. Mouse genomic sequences homologous to GAD cDNA were isolated and used to determine that GAD is encoded by a locus on mouse chromosome 2 (Gad-1) and that an apparent pseudogene locus is on chromosome 10 (Gad-1ps). An interspecific backcross and recombinant inbred strain sets were used to map these two loci relative to other loci on their respective chromosomes. The Gad-1 locus is part of a conserved homology between mouse chromosome 2 and the long arm of human chromosome 2.  相似文献   

4.
The locus for properdin (properdin factor complement, Pfc), a plasma glycoprotein, has been mapped to band A3 of the mouse X chromosome by in situ hybridization to metaphase spreads containing an X;2 Robertsonian translocation. The X-linkage of the locus has also been confirmed by analysis of Mus musculus x Mus spretus interspecific crosses. The XA3 localization for Pfc places it in the chromosomal segment conserved between man and mouse which is known to contain at least six other homologous loci (Cybb, Otc, Syn-1 Maoa, Araf, Timp).  相似文献   

5.
Randomly cloned DNA fragments and a poly-(GATA) containing sequence were used as probes to identify sex chromosomal inheritance and to detect differences at the molecular level between the homomorphic X and Y in the phorid fly,Megaselia scalaris. Restriction fragment length differences between males and females and between two laboratory stocks of different geographic origin were used to differentiate between sex chromosomal and autosomal origin of the respective fragments. Five random probes detected X and Y chromosomal DNA loci and two others recognized autosomal DNA loci. One random probe and the poly(GATA) probe hybridized with both sex chromosomal and autosomal restriction fragments. Most of the Y chromosomal restriction fragments were conserved in length between the two stocks while most of the X chromosomal and autosomal fragments showed length polymorphism. It was concluded, therefore, that the Y chromosome contains a conserved segment in which crossover is suppressed and restriction site differences have accumulated relative to the X. These chromosomes, therefore, conform to a theoretically expected early stage of sex chromosome evolution.  相似文献   

6.
Recently a candidate gene for the primary testis-determining factor (TDF) encoding a zinc finger protein (ZFY) has been cloned from the human Y chromosome. A highly homologous X-linked copy has also been identified. Using this human sequence it is possible to identify two Y loci, an X and an autosomal locus in the mouse (Zfy-1, Zfy-2, Zfx and Zfa, respectively). Suprisingly ZFY is more homologous to the mouse X and autosomal sequences than it is to either of the Y-linked loci. Both Zfy-1 and Zfy-2 are present in the Sxr region of the Y but Zfy-2 is absent in the Sxr deletion variant Sxrb (or Sxr") suggesting it is not necessary for male determination. Extensive backcross analyses map Zfa to mouse chromosome 10 and Zfx to a 5-cM interval between anonymous X probe MDXS120 and the tabby locus (Ta). We also show that the mouse androgen receptor locus (m-AR) believed to underlie the testicular feminization mutation (Tfm) shows complete linkage to Zfx. Comparative mapping indicates that in man these genes lie in separate conserved DNA segments.  相似文献   

7.
Previously, we assigned the alpha A2-crystallin (Crya-1) structural gene to mouse chromosome 17 via Southern blot hybridization analysis of mouse x Chinese hamster somatic cell hybrids. Using in situ hybridization, we have now localized this gene to 17A3----B, a subchromosomal region containing several genes whose linkage relationships have been shown to be conserved on human chromosome 6. In man, however, the homologous gene (CRYA1) is located on human chromosome 21, indicating that internal rearrangements can occur within highly conserved chromosomal regions during the divergence of man and mouse.  相似文献   

8.
For identification of ECS (``evolutionarily conserved segments') between rat and mouse, 893 rat–mouse orthologous gene-pairs were brought together with zoo-FISH analysis. In total, 59 autosomal ECS and 4 X-chromosomal ones were detected. Combining FISH and zoo-FISH data, the segments were anchored on the rat chromosomes, providing an improved comparative map between the two species. Since chromosomal evolution is a slow process, it is reasonable to assume that the genome organization, including gene order, is essentially conserved within the ECS. In this way we assigned tentative subchromosomal map positions to 303 rat genes, for which no regional mapping information was available. Furthermore, the concept of prediction mapping was extended to unmapped rat homologs of genes, which in the mouse are situated inside or in the vicinity of an ECS. For a total of 6669 genes, we predicted a single rat chromosomal position, whereas for another 448 genes we could predict that they were located in one of two possible positions. Thus, our study has increased the number of genes for which there is positional mapping information in the rat almost fivefold.  相似文献   

9.
The serine- and arginine-rich (SR) splicing factors play an important role in both constitutive and alternative pre-mRNA splicing, and the functions of these splicing factors are regulated by phosphorylation. We have previously characterized SRPK1 (SFRSK1) and SRPK2 (SFRSK2), which are highly specific protein kinases for the SR family of splicing factors. Here we report the chromosomal localization of the mouse and human genes for both kinases. SRPK1 probes detected two loci that were mapped to mouse Chromosomes 17 and X using The Jackson Laboratory interspecific backcross DNA panel, and SRPK2 probes identified a single locus on mouse Chromosome 5. Using a somatic cell hybrid mapping panel and by fluorescence in situ hybridization, SRPK1 and SRPK2 were respectively mapped to human chromosomes 6p21.2-p21.3 (a region of conserved synteny to mouse Chromosome 17) and 7q22-q31.1 (a region of conserved synteny to mouse Chromosome 5). In addition, we also found multiple SRPK-related sequences on other human chromosomes, one of which appears to correspond to a SRPK2 pseudogene on human chromosome 8.  相似文献   

10.
Human Chromosome 19 (HSA19) is virtually completely sequenced. A complete physical contig map made up of BACs and cosmids is also available for this chromosome. It is, therefore, a rich source of information that we have used as the basis for a comparative mapping study with the chicken. Various orthologs of genes known to map to HSA19 have been mapped in the chicken. Five chicken microchromosomes (two of which were previously undefined) are seen to show conserved synteny with this chromosome, along with individual gene homologs on Chr 1 and another tiny microchromosome. Compared with the mouse, which has 12 chromosomal regions homologous to HSA19, the chicken genotype displays fewer evolutionary rearrangements. The ancestral nature of the chicken karyotype is demonstrated and may prove to be an excellent tool for studying genome evolution.  相似文献   

11.
Tyrosinase-positive oculocutaneous albinism (ty-pos OCA), an autosomal recessive disorder of the melanin biosynthetic pathway, is the most common type of albinism occurring worldwide. In southern African Bantu-speaking negroids it has an overall prevalence of about 1/3,900. Since the basic biochemical defect is unknown, a linkage study with candidate loci, candidate chromosomal regions, and random loci was undertaken. The ty-pos OCA locus was found to be linked to two arbitrary loci, D15S10 and D15S13, in the Prader-Willi/Angelman chromosomal region on chromosome 15q11.2-q12. The pink-eyed dilute locus, p, on mouse chromosome 7, maps close to a region of homology on human chromosome 15q, and we postulate that the ty-pos OCA and p loci are homologous.  相似文献   

12.
Restriction fragment length polymorphisms (RFLPs) were observed in BamHI-digested mouse DNA probed with a cDNA for human fibronectin. Analysis of the inheritance of fibronectin RFLPs in AKXD and SWXJ recombinant inbred strains of mice mapped the locus, Fn-1, to the midregion of mouse chromosome 1 about 4 cM distal from the loci encoding gamma-crystallins (Cryg). Loci homologous to genes in the centromeric third of mouse chromosome 1 are also syntenic in rats, humans, and cattle and may, therefore, mark a large conserved chromosomal segment of the mammalian genome.  相似文献   

13.
14.
Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution.  相似文献   

15.
Summary The chromosomal assignments of genes belonging to the EF-hand family which have a common origin are compiled in this article. So far data are available from 27 human gene loci belonging to 6 subfamilies and 8 murine loci belonging to 4 subfamilies. Chromosomal localization has been obtained by somatic-cell hybrid analysis using the Southern blot technique or PCR amplification, metaphase spread in situ hybridization, or isolation of the particular genes from chromosome-specific libraries. Except for genes of the S-100 alpha proteins which are grouped on human chromosome 1q12-25 and mouse chromosome 3, no linkage has been found for genes encoding EF-hand proteins, indicating absence of selective pressure for maintaining chromosomal clustering. Six of these genes map to known syntenic groups conserved in the human and mouse genomes. This suggests that chromosomal translocations occurred before divergence of these species. The possible significance of chromosomal positioning with respect to nearby located known genes and genetic disease loci is discussed.  相似文献   

16.
The African vlei rat, Otomys irroratus, comprises several distinct chromosomal races that may be grouped into two major cytogenetic clades. Recognition of these clades is underpinned by a complex chromosomal rearrangement involving three different autosomes in the unfused state. We have used unidirectional fluorescence in situ hybridization (FISH) of mouse chromosome-specific painting probes to molecularly define the components of this rearrangement as well as to establish the chromosomal homologies between the mouse and the vlei rat genomes. This has allowed for the detection of 41 autosomal segments of conserved synteny. Nine mouse chromosomes were conserved in toto (MMU3, 4, 6, 7, 11, 12, 14, 18, 19) with a further seven (MMU2, 5, 8, 9, 10, 13, 16) showing homology to two discrete regions in the vlei rat genome. Two mouse autosomes (MMU15, 17) correspond to three regions in O. irroratus with MMU1 being the most fragmented showing five sites of hybridization in this species. By mapping these data to published sequence-based phylogenies we are able to confirm most of the published putative ancestral murine chromosomal states. Our data further indicate that MMU15a+ MMU13b+MMU10b+MMU17b was present in the murine ancestral karyotype suggesting an ancestral 2n = 52 rather than the 2n = 54 previously postulated.  相似文献   

17.
Autosomal dominant polycystic kidney disease (PKD1) is linked to the alpha-globin locus near the telomere of chromosome 16p. We established the existence of a conserved linkage group in mouse by mapping conserved sequences and cDNAs from the region surrounding the PKD1 gene in the mouse genome. Results obtained with the BXD recombinant strain system and somatic cell hybrids show the homologous region to be located on mouse chromosome 17 near the globin pseudogene Hba-ps4, an unprocessed alpha-like globin gene. The markers we mapped are widely distributed over the region known to contain the PKD1 gene, and it is therefore likely that the mouse homologue of PKD1 is also located on mouse chromosome 17.  相似文献   

18.
A recessive mutation exhibiting severe myelin breakdown, mainly at the level of the lumbar segments of the spinal cord and without any associated inflammation, was discovered in a partially inbred rat colony. Analysis of the segregation patterns of a set of polymorphic microsatellite markers in two inter-strain crosses allowed the mapping of this autosomal recessive mutation to rat Chromosome (Chr) 17, very close to the prolactin (Prl) locus, in a region homologous to human Chr 6p21.2-22.3 and mouse Chr 13. The pathology of the demyelination process and the chromosomal localization indicate that this mutation has no known equivalent in either mouse or human. Received: 21 March 1996 / Accepted: 22 July 1996  相似文献   

19.
Infection of mouse embryos with Moloney murine leukemia virus (M-MuLV) has yielded several mouse substrains with stable germ line integration of retroviral DNA at distinct chromosomal loci (Mov loci; Jaenisch et al., 1981). There is evidence that flanking DNA sequences can have an effect on virus expression and, conversely, inserted viral DNA may affect the expression of adjacent host genes. As part of our studies on the interaction of inserted M-MuLV with the mouse genome, we have chromosomally mapped four different Mov loci by hybridizing single-copy mouse sequences, flanking the proviral DNA, to interspecies somatic cell hybrids. Furthermore, these sequences were assigned regionally by in situ hybridization to mouse metaphase chromosomes. In Mov-13 mice, M-MuLV had inserted into the alpha 1(I) collagen gene leading to early embryonic death in homozygotes. We have assigned this locus to the distal region of chromosome 11. Thus, the alpha 1(I) collagen gene is part of an evolutionarily conserved linkage group with the homologous genes on human chromosome 17. Three other proviral integration sites were mapped to chromosome 1, bands BC (Mov-7), chromosome 11, bands BC (Mov-9), and chromosome 3, bands FG (Mov-10). The Mov-10-specific probe detects an EcoRI-specific restriction fragment length polymorphism, which can make this probe a useful genetic marker.  相似文献   

20.
A family of DNA loci (DNF28) from the pseudoautosomal region of the human sex chromosomes is characterized by a repeated element (STIR: subtelomeric interspersed repeat) which detects homologous sequences in the telomeric regions of human autosomes by in situ hybridization. Several STIR elements from both the pseudoautosomal region and terminal parts of autosomes were cloned and sequenced. A conserved 350 bp sequence and some characteristic structural differences between the autosomal and pseudoautosomal STIRs were observed. Screening of the DNA sequence databases with a consensus sequence revealed the presence of STIRs in several human loci localized in the terminal parts of different chromosomes. We mapped single copy probes flanking the cloned autosomal STIRs to the subtelomeric parts of six different chromosomes by in situ hybridization and genetic linkage analysis. The linkage data show a greatly increased recombination frequency in the subtelomeric regions of the chromosomes, especially in male meiosis. The STIR elements, specifically located in subtelomeric regions, could play a role in the peculiar recombination properties of these chromosomal regions, e.g. by promoting initiation of pairing at meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号