首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preferential repair of damage in actively transcribed DNA sequences in vivo   总被引:4,自引:0,他引:4  
P C Hanawalt 《Génome》1989,31(2):605-611
  相似文献   

2.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

3.
4.
Heterogeneity of DNA repair at the gene level   总被引:13,自引:0,他引:13  
  相似文献   

5.
6.
7.
8.
9.
The tumor suppressor protein p53 plays a central role in modulating the cellular responses to DNA damage. Several recent studies, undertaken with the whole genomic DNA or full-length gene segments, have shown that p53 is involved in nucleotide excision repair and it selectively influences the adduct removal from the non-transcribed strand in the genome. In this study, we have analyzed the damage induction at nucleotide resolution by ligase-mediated polymerase chain reaction and compared the repair of ultraviolet radiation-induced cyclobutane pyrimidine dimers within exon 8 of p53 gene in normal and Li-Fraumeni syndrome fibroblasts as well as in normal and human papillomavirus 16 E6 and E7 protein-expressing human mammary epithelial cells. The results demonstrate that (i) loss or disruption of p53 function decreases efficiency of DNA repair, by preferentially affecting the repair of non-transcribed strand and of intrinsically slow repair sites in transcribed strand; (ii) mutant p53 protein affects DNA repair, at least of non-transcribed strand, in a dominant negative manner; and (iii) pRb does not have an effect on the repair of DNA damage within transcribed or non-transcribed strand. The overall data suggest that p53 could regulate excision repair or related events through direct protein-protein interaction.  相似文献   

10.
11.
12.
13.
Hierarchies of DNA repair in mammalian cells: biological consequences   总被引:7,自引:0,他引:7  
Mammalian cells exposed to genotoxic agents exhibit heterogeneous levels of repair of certain types of DNA damage in various genomic regions. For UV-induced cyclobutane pyrimidine dimers we propose that at least three levels of repair exist: (1) slow repair of inactive (X-chromosomal) genes, (2) fast repair of active housekeeping genes, and (3) accelerated repair of the transcribed strand of active genes. These hierarchies of repair may be related to chromosomal banding patterns as obtained by Giemsa staining. The possible consequences of defective DNA repair in one or more of these levels may be manifested in different clinical features associated with UV-sensitive human syndromes. Moreover, molecular analysis of hprt mutations reveals that mutations are primarily generated by DNA damage in the poorly repaired non-transcribed strand of the gene.  相似文献   

14.
15.
Removal of ultraviolet light induced cyclobutane pyrimidine dimers (CPD) from active and inactive genes was analyzed in cells derived from patients suffering from the hereditary disease Cockayne's syndrome (CS) using strand specific probes. The results indicate that the defect in CS cells affects two levels of repair of lesions in active genes. Firstly, CS cells are deficient in selective repair of the transcribed strand of active genes. In these cells the rate and efficiency of repair of CPD are equal for the transcribed and the nontranscribed strand of the active ADA and DHFR genes. In normal cells on the other hand, the transcribed strand of these genes is repaired faster than the nontranscribed strand. However, the nontranscribed strand is still repaired more efficiently than the inactive 754 gene and the gene coding for coagulation factor IX. Secondly, the repair level of active genes in CS cells exceeds that of inactive loci but is slower than the nontranscribed strand of active genes in normal cells. Our results support the model that CS cells lack a factor which is involved in targeting repair enzymes specifically towards DNA damage located in (potentially) active DNA.  相似文献   

16.
Certain DNA base lesions induced by ionizing radiation or oxidative stress are repaired faster from the transcribed strand of active genes compared to the genome overall. In this study, it was investigated whether radiation-induced DNA strand breaks are preferentially repaired in active genes compared to the genome as a whole in CHO cells. The alkaline unwinding technique coupled to slot-blot hybridization with specific DNA probes was used to study the induction and repair of DNA strand breaks in defined DNA sequences. Results using this technique showed a linear dose response for the formation of radiation-induced DNA strand breaks in the dihydrofolate reductase (DHFR) gene. Furthermore, the half-life of radiation-induced strand breaks was less than 5 min in the DHFR gene, in the ribosomal genes, and in the genome as a whole. These results suggest that the repair of DNA strand breaks is fast and uniform in the genome of mammalian cells.  相似文献   

17.
18.
We have analyzed the fine structure of DNA repair in Chinese hamster ovary (CHO) cells within the G1 and G2 phases of the cell cycle. Repair of inactive regions of the genome has been suggested to increase in the G2 phase of the cell cycle compared with other phases. However, detailed studies of DNA repair in the G2 phase of the cell cycle have been hampered by technical limitations. We have used a novel synchronization protocol (D. K. Orren, L. N. Petersen, and V. A. Bohr, Mol. Cell. Biol. 15:3722-3730, 1995) which permitted detailed studies of the fine structure of DNA repair in G2. CHO cells were synchronized and UV irradiated in G1 or early G2. The rate and extent of removal of cyclobutane pyrimidine dimers from an inactive region of the genome and from both strands of the actively transcribed dihydrofolate reductase (DHFR) gene were examined within each phase. The repair of the transcribed strand of the DHFR gene was efficient in both G1 and G2, with no major differences between the two cell cycle phases. Neither the nontranscribed strand of the DHFR gene nor an inactive region of the genome was repaired in G1 or G2. CHO cells irradiated early in G2 were more resistant to UV irradiation than cells irradiated in late G1. Since we found no major difference in repair rates in G1 and G2, we suggest that G2 resistance can be attributed to the increased time (G2 and G1) available for repair before cells commit to DNA synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号