首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
The role of nonproliferating cells in tumor regeneration has been studied after subcurative doses of low L.E.T. irradiation. Radiation was applied in a single dose at three different levels, 0–47, 0–94 and 1–88 krad. Studies included estimation of the absolute number of cells per tumor, differential cell counts, and autoradiographic determination of kinetic variables, employing transplantable mouse mammary adenocarcinoma DBAH. Quantitative changes of morphologically denned proliferating and non-proliferating cell pools were followed at different time intervals after irradiation. Irradiation resulted in reduction of the number of cells in both pools, with apparent sparing of nonproliferating cells. The regenerative period started with a gradual increase in the number of cells in the proliferating pool, whereas the number of cells in the nonproliferating pool continued to fall in tumors irradiated with 0–94 and 1 -88 krad. In the late phase of tumor regrowth, the increasing number of cells in the non proliferating pool corresponded to its replenishment by cell transition from the proliferating pool. In an effort to clarify whether cell transition from the nonproliferating to the proliferating pool may take place during the regrowth of radiation perturbed tumors, cell loss rates from both pools were estimated using experimental data. In addition to cell losses from the tumor as a whole, the ‘net loss rate’ of the non-proliferating pool reflects the rate of cell transition from the nonproliferating to the proliferating pool, minus the rate of transition in the opposite direction. A similar definition applies to cell loss rates from the proliferating pool. The results showed: (1) high losses in both pools, with excess losses in the proliferating during the early phase after irradiation; (2) in the early stage of regrowth after irradiation, the cell net loss rate for the nonproliferating pool increased, in contrast to the behavior of cell loss rate for the proliferating pool and the average cell loss rate for the tumor as a whole; (3) in the late stage of regrowth a decrease in net loss rate for the nonproliferating pool reflects the excess production of nonproliferating cells over control tumors. These results suggest that cell transition from the nonproliferating to the proliferating pool takes place at the beginning of tumor regrowth after subcurative single-dose irradiation.  相似文献   

2.
Parenchymal tumor cells of murine mammary carcinomas can be divided into two pools, using nucleoli as morphological ‘markers’. Cells with dense nucleoli traverse the cell cycle and divide, thus constituting the proliferating pool. Cells with trabeculate or ring-shaped nucleoli either proceed slowly through G1 phase or are arrested in it. The role of these non-proliferating, G1 phase-confined cells in tumor regeneration was studied in vivo after a subcurative dose of X-irradiation in two transplantable tumor lines. Tumor-bearing mice were continuously injected with methyl[3H]thymidine before and after irradiation. Finally, the labeling was discontinued, mice injected with vincristine sulfate and cells arrested in metaphase were accumulated over a 10-hr period. Two clearly delineated groups of vincristinearrested mitoses emerged in autoradiograms prepared from tumor tissue at the time of starting tumor regrowth: one group with the silver-grain counts corresponding to the background level, the other with heavily labeled mitoses. As the only source of unlabeled mitoses was unlabeled G1 phase-confined cells persisting in the tumor, this observation indicated cell transition from the non-proliferating to the proliferating pool, which took place in the initial phase of the tumor regrowth. Unlabeled progenitors have apparently remained in G1 phase for at least 5–12 days after irradiation.  相似文献   

3.
Successful radiosensitization requires that tumor cells become more radiosensitive without causing an equivalent reduction in the survival of cells of the surrounding normal tissues. Since tumor cell radiosensitivity can be influenced by RAS oncogene activation, we have hypothesized that inhibition of oncogenic RAS activity would lead to radiosensitization of tumors with activated RAS. We previously showed in tissue culture that prenyltransferase treatment of cells with activated RAS resulted in radiosensitization, whereas treatment of cells with wild-type RAS had no effect on radiation survival. Here we ask whether the findings obtained in vitro have applicability in vivo. We found that treatment of nude mice bearing T24 tumor cell xenografts with farnesyltransferase inhibitors resulted in a significant and synergistic reduction in tumor cell survival after irradiation. The regrowth of T24 tumors expressing activated RAS was also significantly prolonged by the addition of treatment with farnesyltransferase inhibitors compared to the regrowth after irradiation alone. In contrast, there was no effect on the radiosensitivity of HT-29 tumors expressing wild-type RAS. These results demonstrate that specific radiosensitization of tumors expressing activated RAS oncogenes can be obtained in vivo.  相似文献   

4.
In cytotoxicity and indirect immunofluorescence tests an antiserum to ACA-1 (activated cell antigen) reacted with 58–100% of actively proliferating cells from tumors of lymphoid (EL-4 T lymphoma, MOPC 104E plasmacytoma) and nonlymphoid origin (AH-22 hepatoma, Sa-1 and MCh-11 sarcomas, F2 mammary cancer). Absorption of anti-ACA-1 serum with tumor cells sharply reduced its activity both against the cells of all these neoplasms and against normal activated T and B lymphocytes. Absorption with proliferating murine cells from the brain of embryos and the retina of neonates or with similar (nonproliferating) cells from adult mice did not affect the activity of the antiserum. It is concluded that ACA-1 is expressed on actively proliferating cells of the tumors studied.  相似文献   

5.
The [125I]UdR loss technique was used to estimate cell loss from RIF-1, EMT6 and KHJJ tumors in order to determine the length of the delay between labeling and the beginning of the loss of labeled cells, and also to calculate a value for ø, the cell loss factor. To determine the importance of reutilization of label released from the gut and/or the influx of labeled host cells, the blood flow to some tumors was occluded during and for 30 min after injection of the label. Relatively small amounts of radioactivity entered occluded RIF-1 tumors during 9 days after injection of [125I]UdR, indicating that reutilization of systemic label and influx of labeled host cells are not significant in this system. In contrast, substantial amounts of radioactivity entered occluded EMT6 and KHJJ tumors, reaching 40% of the total activity in non-occluded tumors during 6 days following injection. After corrections were made for this influx of label, the [125I]UdR loss curves from RIF-1 and EMT6 tumors were essentially exponential from the first day following injection of label. This was interpreted as indicating the loss of proliferating as well as non-proliferating cells from both tumors. The cell loss factor derived from the [125I]UdR loss curves corrected for influx appeared to agree well with published values derived from analysis of percent labeled mitoses curves. In contrast, the corrected [125I]UdR loss curves from KHJJ tumors showed that loss of activity began three days after injection of label, indicating that primarily nonproliferating cells are lost from this tumor.  相似文献   

6.
The quinacrine dihydrochloride (QDH) staining and the [3H]thymidine incorporation patterns were simultaneously analyzed in nuclei of rat cells from a proliferating (granulation tissue) and a nonproliferating tissue (liver). Nuclei from freshly isolated and cultured cells of the rapidly proliferating subcutaneous granulation tissue showed a cell cycle-related pattern similar to that previously described with growing fibroblast-like cells in vitro. Nuclei of liver cells in smears from biopsies and in histological sections showed a fluorescence pattern similar to that of serum-deprived arrested G0 cells from established cell lines. Treatment of primary cultured rat hepatocytes with phenobarbital altered their degree of chromatin condensation similar to that seen after treatment of rats in vivo. The data indicate that the QDH staining pattern is an early marker, suitable for detecting the cell cycle-promoting activity of chemicals (e.g., of tumor promoters) in nonproliferating cells from various tissues in vivo and in vitro.  相似文献   

7.
Radiation-induced synchronization of cells in the radiosensitive G2 phase can, theoretically, be applied to individual tailoring of fractionation schemes, possibly rendering radiotherapy more effective. For that purpose, cell cycle perturbations were studied in five xenografts by flow cytometry. A dose-dependent increase of cells in G2 phase was noticed in all five tumor cell lines after high-dose-rate irradiation, and in four tumor cell lines after low-dose-rate irradiation. The timing of maximum accumulation was not related to dose, but coincided with the cell cycle time of the respective tumors. Furthermore, the increase in the number of cells in G2 phase correlated with the radiosensitivity of the tumors as assessed by measurements of regrowth delays. The observed synchronization provides a basis for further investigations on the relevance of radiation-induced cell cycle synchrony to the effectiveness of fractionated radiotherapy.  相似文献   

8.
INTRODUCTION: Many genes are differentially expressed between androgen-dependent and androgen-independent prostate cancer (CaP). Differential expression analysis and subtractive hybridization previously identified nine genes expressed in intact mice bearing CWR22 tumors and castrated mice bearing recurrent CWR22 tumors but not in regressed tumors. The objectives of this study were to develop an immunostaining method to dual-label foci of proliferating tumor cells [the origin of castration-recurrent CaP (CR-CaP)], to determine which of the nine candidate proteins were differentially expressed in proliferating versus nonproliferating cells at the onset of growth after castration, and to test preclinical findings using clinical specimens of androgen-stimulated benign prostate (AS-BP) and CaP (AS-CaP) and CR-CaP. METHODS: Paraffin-embedded, bromodeoxyuridine-injected CWR22 tumors were hydrated, antigen-retrieved using high heat and high pressure, labeled for each of the nine antigens of interest, visualized using peroxidase, and counterstained with hematoxylin. Mean optical density was calculated for proliferating and nonproliferating areas using automated (nuclear staining) or manual (cytoplasmic staining) image analysis. Prostate tissue microarray sections were immunostained and visually scored. RESULTS: Immunohistochemistry revealed higher nuclear expression of thioredoxin reductase 1 (TrxR1) in proliferating cells than nonproliferating cells (P < .005). There were no statistical differences between cell types in the expression of other proteins. TrxR1 expression was higher (P < .01) in CR-CaP compared with AS-BP or AS-CaP. CONCLUSIONS: Increased TrxR1 expression in CR-CaP was consistent with increased TrxR1 and BrdU expression at the onset of growth in the CWR22 model. Thioredoxin reductase 1 should be targeted in an attempt to delay or prevent CaP recurrence after castration.  相似文献   

9.
S Masunaga  K Ono  M Abe 《Radiation research》1991,125(3):243-247
C3H/He mice bearing the SCC VII tumor were irradiated after being given 10 injections of 5-bromo-2'-deoxyuridine (BrdU) to label all proliferating cells in the tumors, and the tumors were then excised and trypsinized. The tumor cell suspensions were incubated with cytochalasin-B (which blocks cytokinesis), and the micronucleus frequency in unlabeled cells was determined using immunofluorescence staining to BrdU. The micronucleus frequency was then used to calculate the surviving fraction of the unlabeled cells, using the regression line relating the micronucleus frequency to the surviving fraction determined separately for the total tumor cell population. Using this technique, a cell survival curve could be determined for the unlabeled cells, which were regarded as the quiescent cells. Assays performed both immediately after and 24 h after irradiation of normally-aerated tumors showed that unlabeled cells were more radioresistant and had a greater capacity for repair of potentially lethal damage than the tumor cell population as a whole. Moreover, when the assay was performed immediately after the irradiation of both normally-aerated and hypoxic tumors, it was found that unlabeled cells had a much higher hypoxic fraction than the tumor cell population as a whole. This appears to be a useful method for determining the responses of quiescent cells in solid tumors to various treatments.  相似文献   

10.
《Fly》2013,7(3):237-241
Stem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts. The switch from neuroepithelial cells to neuroblasts is triggered by a proneural wave that sweeps across the neuroepithelium. Here we review recent findings showing that the orchestrated action of the Notch, EGFR, Fat-Hippo, and JAK/STAT signalling pathways controls the progression of the proneural wave and the sequential transition from symmetric to asymmetric division. The neuroepithelial to neuroblast transition in the optic lobe bears many similarities to the switch from neuroepithelial cell to radial glial cell in the developing mammalian cerebral cortex. The Notch signalling pathway has a similar role in the transition from proliferating to differentiating stem cell pools in the developing vertebrate retina and in the neural tube. Therefore, findings in the Drosophila optic lobe provide insights into the transitions between proliferative and differentiative division in the stem cell pools of higher organisms.  相似文献   

11.
Egger B  Gold KS  Brand AH 《Fly》2011,5(3):237-241
Stem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts. The switch from neuroepithelial cells to neuroblasts is triggered by a proneural wave that sweeps across the neuroepithelium. Here we review recent findings showing that the orchestrated action of the Notch, EGFR, Fat-Hippo, and JAK/STAT signalling pathways controls the progression of the proneural wave and the sequential transition from symmetric to asymmetric division. The neuroepithelial to neuroblast transition in the optic lobe bears many similarities to the switch from neuroepithelial cell to radial glial cell in the developing mammalian cerebral cortex. The Notch signalling pathway has a similar role in the transition from proliferating to differentiating stem cell pools in the developing vertebrate retina and in the neural tube. Therefore, findings in the Drosophila optic lobe provide insights into the transitions between proliferative and differentiative division in the stem cell pools of higher organisms.  相似文献   

12.
Exposure of pulmonary airways to environmental toxins and allergens may cause proliferation of airway epithelial cells and mucous cell metaplasia (MCM); however, it is unclear to what extent proliferating cells differentiate into mucus-storing cells and contribute to MCM. Our previous studies demonstrated that Bcl-2, an inhibitor of apoptosis with cell cycle regulatory functions, is expressed in metaplastic mucous cells. The purpose of the present study was to investigate the number of metaplastic mucous cells that are derived from proliferating epithelial cells and whether Bcl-2 has a role in cell cycle entry in these cells. Rats were intratracheally instilled with 100 microg of LPS from Pseudomonas aeruginosa in 500 microl of saline, and proliferating airway cells were labeled with bromodeoxyuridine (BrdU) by implanting a subcutaneous osmotic pump 24 h before instillation. The volume of stored mucosubstance and the number of mucous cells were increased 10- and 3-fold, respectively, from 24-48 h after instillation. The number of total epithelial cells per millimeter of basal lamina increased, and the number of serous cells per millimeter of basal lamina decreased during this time. Approximately 50% of Alcian blue-periodic acid Schiff-stained mucous cells were labeled with BrdU at 48 h after instillation, suggesting that one-half of the secretory cells were derived from proliferating cells. Furthermore, 50% of the Bcl-2-positive mucous cells were BrdU negative and therefore derived from nonproliferating, preexisting cells. Our findings demonstrate that preexisting and proliferating cells differentiate into mucous cells and compose LPS-induced metaplasia and that Bcl-2 does not have cell cycle regulatory function in these cells.  相似文献   

13.
The growth kinetics of a cancer cell population as a function of the total number of cells and the proportion of proliferating and resting cells at the beginning of the growth has been analysed by a mathematical model. The model takes into account the processes of cell division, death and transition from proliferation to rest and backwards. It is shown that a single cell population growing under the same environmental conditions has an extremely broad spectrum of growth patterns. The whole multiplicity of possible growth patterns has been determined by the inherent cellular growth characteristics of the population, while the growth pattern actually realized of the variety of growth curves depends on the total number of cells and the proportion of proliferating and resting cells at the initial moment of growth. The model is shown to provide a good prediction of experimentally measured kinetics of regrowth of tumour cells subcultured after various times of the growth in unfed cultures, and the kinetics of tumour cell growth after severe hypoxia. The role of cell transitions between proliferating and resting stages in the problem of growth control is discussed.  相似文献   

14.
We have used monoclonal antibodies to statin (S-44) and a cyclin-like protein (S-132) to examine the distribution of these two antigens in proliferating and in nonproliferating populations of cells. We have found that this cyclin-like protein is present in proliferating fibroblasts, whereas statin is absent from these same cell populations; in contrast, in senescent populations of fibroblasts the cyclin-like antigen disappears and statin labeling of nuclei appears. During myogenesis in rat muscle cell cultures, S-132 labeling is present in proliferating myoblasts and disappears after cells fuse and differentiate as multinucleated myotubes. In contrast, statin is absent from proliferating myoblasts, but appears when these cells become postmitotic and begin to differentiate. Similar results were seen during chick myogenesis. We have also found similar results during serum-starvation-induced differentiation in neuroblastoma cells. These results indicate that the cyclin-like protein disappears and statin appears upon commitment to differentiation in vitro, and the presence or the absence of these proteins appears to provide cellular markers for the transition from the proliferative to the nonproliferative state during differentiation.  相似文献   

15.
16.
Summary Pulmonary tumors were produced in A. strain mice by intravenous injection of A. strain mammary carcinoma cells. The mesenteric lymph nodes of pigs were immunized by implantation of fragments from the same tumors into the pig mesentery.Tumor-immune pig lymph node cells when injected IV 7 days after tumor cells did not reduce the number of tumors, counted on day 14. However, when preceded by 200 rad thoracic irradiation on day 3 (which increased the number of pig cells settling in the lungs) tumor-immune cells given IV reduced the number of tumors compared with the effect of irradiation alone, or in combination with nonimmune pig cells.When tumor-immune pig cells were injected IP on day 7 (following thoracic irradiation on day 3), no antitumor effect was observed. Thus immediate pig cell/tumor cell contact is important in order to obtain an antitumor effect.Pig cells immunized against a human bladder carcinoma did not reduce pulmonary tumor formation by one of the mouse tumors.  相似文献   

17.
A review of available data on the replication-dependent and replication-independent histone synthesis in the proliferating and nonproliferating (quiescent) cells during gametogenesis and early embryogenesis. In each of the considered models the replication-dependent and replication-independent histone synthesis play different roles in the chromatin organization and metabolism. The transition from replication-dependent to replication-independent histone synthesis during gametogenesis is a regular process directed to the formation of a highly compacted metabolically inert chromatin (males) and to the formation of histone protein pool in order to provide the chromatin nucleosome structure in the sperm nucleus during fertilization, as well as the nuclear chromatin in zygotes and blastomeres (females). A suggestion is put forward that the coupling of histone and DNA syntheses should arise not simultaneously in all cells of the embryo but have a regional pattern, due, possibly, to the asynchrony of cell cycle in the early embryos.  相似文献   

18.
Acceleration of clonogen repopulation during fractionated irradiation after about 3 weeks has been demonstrated previously in FaDu human squamous cell carcinoma in nude mice (Petersen et al., Int. J. Radiat. Oncol. Biol. Phys. 51, 483-493, 2001). Selection of genetically distinct, rapidly proliferating clones might contribute to this phenomenon. To address this question, three sublines (R1-R3) were established from FaDu tumors that recurred locally after fractionated irradiation. The tumors were retransplanted and irradiated under clamp hypoxia with single doses or with 18 x 3 Gy within 18 days or 36 days, followed by graded top-up doses. The results were compared with data obtained after the same treatment schedules in the parental tumor line. Histologies, tumor volume doubling times, and potential doubling times of FaDu sublines R1-R3 were not different from those of the parental line. The radiation dose required to control 50% of the tumors (TCD(50)) after single-dose irradiation of 37-38 Gy was the same for the FaDu sublines R1-R3 and the parental tumor. The top-up TCD(50) values for the FaDu sublines R1-R3 after 18 fractions within 36 days were 14-17 Gy higher than those after 18 fractions within 18 days, indicating significant repopulation. The magnitude of this effect was not significantly different between the sublines R1-R3 or between these sublines and the parental FaDu tumors. The results indicate that selection of genetically distinct, rapidly proliferating clones does not contribute to the acceleration of repopulation during fractionated irradiation in poorly differentiated FaDu tumors.  相似文献   

19.
In order to study the growth dynamics of proliferating and non-proliferating cells utilizing discrete-time state equations, the cell cycle was divided into a finite number of age compartments. In analysing tumor growth, the kinetic parameters associated with a retardation in the growth rate of tumors were characterized by computer simulation in which the simulated results of the growth curve, the growth fraction, and the mean generation time were adjusted to fit the experimental data. The cell age distibution during the period of growth was obtained and by a linear transformation of the state transition matrices, was employed to specify the cell size and DNA content distributions. In an application of the model, the time-course behavior of cell cycle parameters of Ehrlich ascites tumor is illustrated, and the parameters important for the transition of cells in the proliferating compartment to the non-proliferating compartment are discussed, particularly in relation to the G1-G0 and G2-G0 transitions of non-cycling cells as revealed by the variation of cell size distribution.  相似文献   

20.
Summary The granulocyte cell renewal system of the dog is represented by a mathematical model consisting of the following compartments: The pool of pluripotential stem cells, the committed stem cell pool, divided into a blood and a bone marrow compartment, the proliferation pool, the maturation pool, the reserve pool and the blood pool of functional granulocytes. This chain of compartments is described by a system of non-linear differential equations. Cell losses anyplace in the system provoke increased production in all pools containing cells capable to divide. A reduced number of granulocytes in the blood pool stimulates production of a granulocyte releasing factor which mobilizes a rising number of cells to transit from the marrow reserve into the blood pool.The model was simulated on a digital computer. It was found to be capable to reproduce the steady state conditions and it also fits the data of two distinct experimental perturbations of the system both equally well. These perturbations are a loss of proliferating cells as it occurs after the administration of cytostatic drugs and losses of functional cells as they are induced by leukapheresis experiments of differing leukapheresis rates.This study was supported by the Deutsche Forschungsgemeinschaft (SFB 112)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号