首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The membrane-bound hydrogenase (EC class 1.12) of aerobically grown Escherichia coli cells was solubilized by treatment with deoxycholate and pancreatin. The enzyme was further purified to electrophoretic homogeneity by chromoatographic methods, including hydrophobic-interaction chromatography, with a yield of 10% as judged by activity and an overall purification of 2140-fold. The hydrogenase was a dimer of identical subunits with a mol.wt. of 113,000 and contained 12 iron and 12 acid-labile sulphur atoms per molecule. The epsilon 400 was 49,000M-1 . cm-1. The hydrogenase catalysed both H2 evolution and H2 uptake with a variety of artificial electron carriers, but would not interact with flavodoxin, ferredoxin or nicotinamide and flavin nucleotides. We were unable to identify any physiological electron carrier for the hydrogenase. With Methyl Viologen as the electron carrier, the pH optimum for H2 evolution and H2 uptake was 6.5 and 8.5 respectively. The enzyme was stable for long periods at neutral pH, low temperatures and under anaerobic conditions. The half-life of the hydrogenase under air at room temperature was about 12 h, but it could be stabilized by Methyl Viologen and Benzyl Viologen, both of which are electron carriers for the enzyme, and by bovine serum albumin. The hydrogenase was strongly inhibited by carbon monoxide (Ki = 1870Pa), heavy-metal salts and high concentrations of buffers, but was resistant to inhibition by thiol-blocking and metal-complexing reagents. These aerobically grown E. coli cells lacked formate hydrogenlyase activity and cytochrome c552.  相似文献   

2.
3.
In a previous work (Trchounian et al., Biol. Membrany 16:416-428 (1999) (in Russian)) we reported the interrelations between production of H2 and H+-K+ exchange in fermenting Escherichia coli grown under anaerobic conditions at pH 7.5. The ion fluxes had stable stoichiometry 2H+/K+ and were N,N'-dicyclohexylcarbodiimide (DCC)-inhibitable at different external pH and K+ activity. In the present study, the H2 production was further studied in fermenting bacteria grown at pH 7.5 or 6.5. The H2 production was inhibited by DCC and did not occur if bacteria were grown at pH 7.5 in a medium containing formate or upon hypoosmotic stress. The H2 production was not sensitive to osmotic stress when bacteria were grown at pH 6.5. Formation of H2 and 2H+/K+ exchange were not observed in mutants with deletions of the hyfoperon genes, encoding membrane-associated hydrogenase 4. K+ influx in these mutants was not sensitive to valinomycin, in contrast to the K+ influx in the parental strain. If grown at pH 6.5, the mutants produced H2 and carried out 2H+/K+ exchange, when subjected to the hyperosmotic stress. The results suggest a participation of hydrogenase 4 in the production of H2 and proton-potassium exchange in fermenting E. coli grown at pH 7.5. In bacteria grown at pH 6.5 or in a medium containing formate, another membrane-bound hydrogenase, namely hydrogenase 3, may be responsible for the H2 production.  相似文献   

4.
5.
The membrane-bound hydrogenase from Paracoccus denitrificans was purified 68-fold with a yield of 14.6%. The final preparation had a specific activity of 161.9 mumol H2 min-1 (mg protein)-1 (methylene blue reduction). Purification involved solubilization by Triton X-114, phase separation, chromatography on DEAE-Sephacel, ammonium-sulfate precipitation and chromatography on Procion-red HE-3B-Sepharose. Gel electrophoresis under denaturing conditions revealed two non-identical subunits with molecular masses of 64 kDa and 34 kDa. The molecular mass of the native enzyme was 100 kDa, as estimated by FPLC gel filtration in the presence of Chaps, a zwitterionic detergent. The isoelectric point of the Paracoccus hydrogenase was 4.3. Metal analysis of the purified enzyme indicated a content of 0.6 nickel and 7.3 iron atoms/molecule. ESR spectra of the reduced enzyme exhibited a close similarity to the membrane-bound hydrogenase from Alcaligenes eutrophus H16 with g values of 1.86, 1.92 and 1.98. The half-life for inactivation under air at 20 degrees C was 8 h. The Paracoccus hydrogenase reduced several electron acceptors, namely methylene blue, benzyl viologen, methyl viologen, menadione, cytochrome c, FMN, 2,6-dichloroindophenol, ferricyanide and phenazine methosulfate. The highest activity was measured with methylene blue (V = 161.9 U/mg; Km = 0.04 mM), whereas benzyl and methyl viologen were reduced at distinctly lower rates (16.5 U/mg and 12.1 U/mg, respectively). The native hydrogenase from P. denitrificans cross-reacted with purified antibodies raised against the membrane-bound hydrogenase from A. eutrophus H16. The corresponding subunits from both enzymes also showed immunological relationship. All reactions were of partial identity.  相似文献   

6.
The [NiFe] centers at the active sites of the Escherichia coli hydrogenase enzymes are assembled by a team of accessory proteins that includes the products of the hyp genes. To determine whether any other proteins are involved in this process, the sequential peptide affinity system was used. The analysis of the proteins in a complex with HypB revealed the peptidyl-prolyl cis/trans-isomerase SlyD, a metal-binding protein that has not been previously linked to the hydrogenase biosynthetic pathway. The association between HypB and SlyD was confirmed by chemical cross-linking of purified proteins. Deletion of the slyD gene resulted in a marked reduction of the hydrogenase activity in cell extracts prepared from anaerobic cultures, and an in-gel assay was used to demonstrate diminished activities of both hydrogenase 1 and 2. Western analysis revealed a decrease in the final proteolytic processing of the hydrogenase 3 HycE protein, indicating that the metal center was not assembled properly. These deficiencies were all rescued by growth in medium containing excess nickel, but zinc did not have any phenotypic effect. Experiments with radioactive nickel demonstrated that less nickel accumulated in DeltaslyD cells compared with wild type, and overexpression of SlyD from an inducible promoter doubled the level of cellular nickel. These experiments demonstrate that SlyD has a role in the nickel insertion step of the hydrogenase maturation pathway, and the possible functions of SlyD are discussed.  相似文献   

7.
The organization of the membrane-bound hydrogenase from Escherichia coli was studied by using two membrane-impermeant probes, diazotized [125I]di-iodosulphanilic acid and lactoperoxidase-catalysed radioiodination. The labelling pattern of the enzyme obtained from labelled spheroplasts was compared with that from predominantly inside-out membrane vesicles, after recovery of hydrogenase by immunoprecipitation. The labelling pattern of F1-ATPase was used as a control for labelling at the cytoplasmic surface throughout these experiments. Hydrogenase (mol.wt. approx. 63 000) is transmembranous. Crossed immunoelectrophoresis with anti-(membrane vesicle) immunoglobulins, coupled with successive immunoadsorption of the antiserum with spheroplasts, confirmed the location of hydrogenase at the periplasmic surface. Immunoadsorption with sonicated spheroplasts suggests that the enzyme is also exposed at the cytoplasmic surface. Inside-out vesicles were prepared by agglutination of sonicated spheroplasts, and the results of immunoadsorption using these vesicles confirms the location of hydrogenase at the cytoplasmic surface.  相似文献   

8.
Previous communications from this laboratory have indicated that dicarboxylic acid transport in Escherichia coli is an active process, and that at least three genes are responsible for this transport system. In attempts to identify the transport components, one periplasmic binding protein and two membrane integral proteins (SBP 1 and SBP 2) were implicated to participate in the transport system in vivo. In the present communication, we demonstrate, through biochemical analysis of the transport mutants, that the two membrane transport genes, dctA and dctB, are responsible for the two membrane-bound dicarboxylate binding proteins, SBP 2 and SBP 1, respectively. We also find that the substrate recognition sites of SBP 1 and SBP 2 are exposed to the inner and outer surfaces of the membrane, respectively. This may have important implications for the role of SBP 1 and SBP 2 in the translocation process.  相似文献   

9.
Hydrogenase isoenzyme 1 from the membrane fraction of anaerobically grown Escherichia coli has been purified to near homogeneity. The preparation involved dispersion of the membrane fraction with deoxycholate followed by ammonium sulphate precipitation, ion-exchange, hydroxyapatite and gel filtration chromatography steps. The enzyme was assayed by quantification of the H2:benzyl viologen oxidoreductase activity immunoprecipitated by a non-inhibitory antiserum specific for the enzyme. The enzyme constituted about 8% of the hydrogenase activity found in the detergent-dispersed membranes, the remainder being attributable to hydrogenase isoenzyme 2. Isoenzyme 1 was purified 130-fold and the specific activity of the final preparation was 10.6 mumol benzyl viologen reduced min-1 (mg protein)-1 (H2:benzyl viologen oxidoreductase). The final preparation contained polypeptides of apparent Mr 64,000, 31,000 and 29,000. Antibodies were raised both to the final preparation and to immunoprecipitation arcs containing hydrogenase isoenzyme 1, excised from crossed immunoelectrophoresis plates. The former cross-reacted with all three polypeptides in the enzyme preparation but the latter recognised only the Mr-64,000 polypeptide. Immunological analysis revealed that the polypeptides of apparent Mr 31,000 and 29,000 are fragments of a single polypeptide of Mr 35,000 which is present in the detergent-dispersed membranes. The fragmentation of the Mr-35,000 polypeptide during the preparation correlates with a change in the electrophoretic mobility of the enzyme. A similar electrophoretic mobility change was observed, accompanied by cleavage of the Mr-35,000 polypeptide to one of 32,000 when the enzyme was analysed after exposure of detergent-dispersed membranes to trypsin. The enzyme in the detergent-dispersed membranes consists minimally of two subunits of Mr 64,000 and two subunits of Mr 35,000. It contained 12.2 mol Fe and 9.1 mol acid-labile S2-/200,000 g enzyme. The enzyme, purified from bacteria grown in the presence of 63Ni, was found to contain 0.64 (+/- 0.20) mol Ni/200,000 g enzyme. A constant ratio of 63Ni immunoprecipitated to hydrogenase isoenzyme 1 activity immunoprecipitated by antiserum specific for the enzyme was observed during the preparation, consistent with Ni being part of the enzyme. The enzyme has a low Km for H2 (2.0 microM) in the H2:benzyl viologen oxidoreductase assay. It catalyses H2 evolution employing reduced methyl viologen as electron donor. It is inhibited reversibly by CO and irreversibly by N-bromosuccinimide.  相似文献   

10.
11.
The inhibition of the membrane-bound adenosine triphosphatase of Escherichia coli by DCCD (dicyclohexylcarbodi-imide) is studied under conditions of varying KCl concentration. An increase in K+ concentration and in other cations causes an increase in the DCCD sensitivity of the enzyme, as well as significant changes in the kinetic parameters.  相似文献   

12.
The Escherichia coli protein SlyD is a member of the FK-506-binding protein family of peptidylprolyl isomerases. In addition to its peptidylprolyl isomerase domain, SlyD is composed of a molecular chaperone domain and a C-terminal tail rich in potential metal-binding residues. SlyD interacts with the [NiFe]-hydrogenase accessory protein HypB and contributes to nickel insertion during biosynthesis of the hydrogenase metallocenter. This study examines the HypB-SlyD complex and its significance in hydrogenase activation. Protein variants were prepared to delineate the interface between HypB and SlyD. Complex formation requires the HypB linker region located between the high affinity N-terminal Ni(II) site and the GTPase domain of the protein. In the case of SlyD, the deletion of a short loop in the chaperone domain abrogates the interaction with HypB. Mutations in either protein that disrupt complex formation in vitro also result in deficient hydrogenase production in vivo, indicating that the contact between HypB and SlyD is important for hydrogenase maturation. Surprisingly, SlyD stimulates release of nickel from the high affinity Ni(II)-binding site of HypB, an activity that is also disrupted by mutations that affect complex formation. Furthermore, a SlyD truncation lacking the C-terminal metal-binding tail still interacts with HypB but is deficient in stimulating metal release and is not functional in vivo. These results suggest that SlyD could activate metal release from HypB during metallation of the [NiFe] hydrogenase.  相似文献   

13.
A protein fraction from Escherichia Coli soluble extracts contain a NAD(P)H:hydrogen peroxide oxidoreductase activity. This activity is compared to and found to be distinct from well-known E. Coli enzymes involved in the protection from peroxides: hydroperoxidase I (HPI) and its o-dianisidine peroxidase component and the alkyl hydroperoxide reductase.  相似文献   

14.
It was shown that Escherichia coli is able to grow in anaerobic conditions in hyperosmotic media containing 0.5 M sodium chloride or equivalent amount of sucrose. However, in the presence of 0.5 M NaCl, bacterial growth rate and the intensity of oxidation-reduction processes decrease, and the production of molecular hydrogen is absent. Growth rate in the presence of 0.5 M NaCl is four times lower than that in the presence of sucrose. Under hyperosmotic stress by 0.5 M NaCl but not by equivalent amount of sucrose, the uptake of K+ with a high rate is observed. Proline is able to increase the growth rate and the intensity of oxidation-reduction processes and to restore the production of molecular hydrogen as well as to induce the uptake of K+ with a high rate under a hyperosmotic stress. Such effects are observed at pH 7.5 and are absent at pH 5.5. Proline also increases cell size independently of medium pH. It is likely that the effect of proline on oxidation-reduction processes and production of H2 is mediated through the accumulation of K+ in bacteria.  相似文献   

15.
Nitrate reductase extracted from the membrane of Escherichia coli by alkaline heat treatment was purified to homogeneity and used to prepare specific antibody. Nitrate reductase, precipitated by this antibody from Triton extracts of the membrane, contained a third subunit not present in the purified enzyme used to prepare the antibody. Nitrate reductase precipitated by antibody from alkaline heat extracts was composed of peptide fragments of various sizes. These fragments were produced by a membrane-bound protease which was activated by alkaline pH and heat. It is the action of this protease that releases the enzyme from the membrane, as shown by the observations that protease inhibitors decreased the amount of solubilization of the enzyme, and the enzyme remaining in the membrane after heating showed much less proteolytic cleavage than that which was released.  相似文献   

16.
A membrane-bound fraction of polysomes of Escherichia coli has been isolated after lysis of cells without the use of lysozyme. Protein-synthesis studies in vitro show that membrane-bound and free polysomes are different in the following respects. 1. Membrane-bound polysomes synthesize proteins which are exported from the cell. The products include proteins of the outer membrane and a secreted periplasmic protein, the maltose-binding protein. 2. The major product synthesized by free polysomes is elongation factor Tu, a soluble cytoplasmic protein. 3. The activity of membrane-bound polysomes in vitro is more resistant to puromycin than is the activity of free polysomes. In addition, the mRNA associated with membrane-bound polysomes is more stable than the bulk of cellular mRNA as revealed by studies with rifampicin.  相似文献   

17.
18.
19.
20.
The oxidation of dihydroorotate under anaerobic conditions has been examined using various mutant strains of Escherichia coli K-12. This oxidation in cells grown anaerobically in a glucose minimal medium is linked via menaquinone to the fumarate reductase enzyme coded for by the frd gene and is independent of the cytochromes. The same dihydroorotate dehydrogenase protein functions in both the anaerobic and aerobic oxidation of dihydroorotate. Ferricyanide can act as an artificial electron acceptor for dihydroorotate dehydrogenase and the dihydroorotate-menaquinone-ferricyanide reductase activity can be solubilised by 2 M guanidine-HCl with little loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号