首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Blood clotting proceeds through the sequential proteolytic activation of a series of serine proteases, culminating in thrombin cleaving fibrinogen into fibrin. The serine protease inhibitors (serpins) antithrombin (AT) and protein C inhibitor (PCI) both inhibit thrombin in a heparin-accelerated reaction. Heparin binds to the positively charged D-helix of AT and H-helix of PCI. The H-helix of AT is negatively charged, and it was mutated to contain neutral or positively charged residues to see if they contributed to heparin stimulation or protease specificity in AT. To assess the impact of the H-helix mutations on heparin stimulation in the absence of the known heparin-binding site, negative charges were also introduced in the D-helix of AT. AT with both positively charged H- and D-helices showed decreases in heparin stimulation of thrombin and factor Xa inhibition by 10- and 5-fold respectively, a decrease in affinity for heparin sepharose, and a shift in the heparin template curve. In the absence of a positively charged D-helix, changing the H-helix from neutral to positively charged increased heparin stimulation of thrombin inhibition 21-fold, increased heparin affinity and restored a normal maximal heparin concentration for inhibition.  相似文献   

2.
We studied the RNA aptamer Toggle-25/thrombin interaction during inhibition by antithrombin (AT), heparin cofactor II (HCII) and protein C inhibitor (PCI). Thrombin inhibition was reduced 3-fold by Toggle-25 for AT and HCII, but it was slightly enhanced for PCI. In the presence of glycosaminoglycans, AT and PCI had significantly reduced thrombin inhibition with Toggle-25, but it was only reduced 3-fold for HCII. This suggested that the primary effect of aptamer binding was through the heparin-binding site of thrombin, anion-binding exosite-2 (exosite-2). We localized the Toggle-25 binding site to Arg 98, Glu 169, Lys 174, Asp 175, Arg 245, and Lys 248 of exosite-2. We conclude that a RNA aptamer to thrombin exosite-2 might provide an effective clinical reagent to control heparin's anticoagulant action.  相似文献   

3.
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor (serpin) which is thought to be a physiological regulator of activated protein C (APC). The residues F353-R354-S355 (P2-P1-P1′) constitute part of the reactive site loop of PCI with the R-S peptide bond being cleaved by the proteinase. Changing the reactive site P1 and P2 residues to those of either proteinase nexin-1, α1-proteinase inhibitor or heparin cofactor II resulted in a decrease in inhibitory activity towards thrombin and APC. Changing the P2 residue F353 → P generated a rPCI which was a better thrombin inhibitor, but was 10-fold less active with APC. While these results support the concept that the P1 and P2 residues are important in the specificity of PCI, they suggest that the reactive site residues are not the only determinant of serpin specificity. Kinetic analysis of the rPCI variants was consistent with PCI operating by a mechanism similar to that proposed for other serpins. In this model an intermediary complex forms between inhibitor and proteinase that can proceed to either cleavage of the inhibitor as substrate or formation of an inactive complex.  相似文献   

4.
Rezaie AR 《Biochemistry》2002,41(40):12179-12185
Specific cleavage of factor V at several P1Arg sites is critical for maintenance of hemostasis. While cleavage by procoagulant proteinases fXa and thrombin activates the cofactor, its cleavage by the anticoagulant proteinase activated protein C (APC) inactivates it. Antithrombin (AT), a specific serpin inhibitor of both thrombin and factor Xa, but not APC, was used as a model system to investigate molecular determinants of APC specificity in the inactivation reaction. Two mutants were prepared in which the P2 or the P3-P3' residues of the reactive site loop of the serpin were replaced with the corresponding residues of the APC cleavage site in factor V spanning residues 504-509 (Asp(504)-Arg-Arg-Gly-Ile-Gln(509)). Kinetic analysis showed that the reactivities of mutants were impaired by approximately 2-3 orders of magnitude with both factor Xa and thrombin, but improved by approximately 2 orders of magnitude with APC. The saturable dependence of the observed first-order rate constants on the concentrations of AT in complex with approximately 70-saccharide high-affinity heparin revealed that changes in the reactivity of the 504-509 mutant with proteinases are primarily due to an effect in the second reaction step in which a noncovalent serpin-proteinase encounter complex is converted to a stable, covalent complex. These results suggest that the P3-P3' residues of the APC cleavage site in factor Va, particularly P2Arg, confer specificity for the anticoagulant proteinase by improving the reactivity of the catalytic pocket with the transition state of the substrate in the second step of the reaction.  相似文献   

5.
Protein C inhibitor (PCI) is a member of the serpin family of protease inhibitors with many biological functions and broad inhibitory specificity. Its major targets in blood are thrombin and activated protein C (APC), and the inhibition of both enzymes can be accelerated by glycosaminoglycans, including heparin. Acceleration of thrombin and APC inhibition by PCI requires that both protease and inhibitor bind to the same heparin chain to form a bridged Michaelis complex. However, the position of the heparin binding site of APC is opposite to that of thrombin, and formation of the bridged complexes must require either radical reorientation of the proteases relative to PCI or alternate heparin binding modes for PCI. In this study, we investigate how heparin bridges thrombin and APC to PCI by determining the effect of mutations in and around the putative heparin binding site of PCI. We found that heparin binds PCI in a linear fashion along helix H to bridge thrombin, consistent with our recent crystal structure (3B9F), but that it must rotate by approximately 60 degrees to engage Arg-229 to bridge APC. To gain insight into the possible modes of heparin binding to PCI, we solved a crystal structure of cleaved PCI bound to an octasaccharide heparin fragment to 1.55 angstroms resolution. The structure reveals a binding mode across the N terminus of helix H to engage Arg-229 and align the heparin binding site of APC. A molecular model for the heparin-bridged PCI.APC complex was built based on mutagenesis and structural data.  相似文献   

6.
Thrombomodulin (TM) functions as a cofactor to enhance the rate of protein C activation by thrombin approximately 1000-fold. The molecular mechanism by which TM improves the catalytic efficiency of thrombin toward protein C is not known. Molecular modeling of the protein C activation based on the crystal structure of thrombin in complex with the epidermal growth factor-like domains 4, 5, and 6 of TM (TM456) predicts that the binding of TM56 to exosite 1 of thrombin positions TM4 so that a negatively charged region on this domain juxtaposes a positively charged region of protein C. It has been hypothesized that electrostatic interactions between these oppositely charged residues of TM4 and protein C facilitate a proper docking of the substrate into the catalytic pocket of thrombin. To test this hypothesis, we have constructed several mutants of TM456 and protein C in which charges of the putative interacting residues on both TM4 (Asp/Glu) and protein C (Lys/Arg) have been reversed. Results of TM-dependent protein C activation studies by such a compensatory mutagenesis approach support the molecular model that TM4 interacts with the basic exosite of protein C.  相似文献   

7.
A number of alanine and more conservative mutants of residues in the fourth domain of thrombomodulin (TM) were prepared and assayed for protein C activation and for thrombin binding. Several of the alanine mutations appeared to cause misfolding or structural defects as assessed by poor expression and/or NMR HSQC experiments, while more conservative mutations at the same site appeared to allow correct folding and preserved activity. Several of the conservative mutants bound more weakly to thrombin despite the fact that the fourth domain does not directly contact thrombin in the crystal structure of the thrombin-TM complex. A few of the mutant TM fragments bound thrombin with an affinity similar to that of the wild type but exhibited decreases in k cat for protein C activation. These mutants were also less able to cause a change in the steady state fluorescence of fluorescein-EGR-chloromethylketone bound to the active site of thrombin. These results suggest that some residues within the fourth domain of TM may primarily interact with protein C but others are functionally important for altering the way TM interacts with thrombin. Residues in the fourth domain that primarily affect k cat for protein C activation may do this by changing the active site of thrombin.  相似文献   

8.
Koeppe JR  Seitova A  Mather T  Komives EA 《Biochemistry》2005,44(45):14784-14791
Thrombomodulin (TM) forms a 1:1 complex with thrombin. Whereas thrombin alone cleaves fibrinogen to make the fibrin clot, the thrombin-TM complex cleaves protein C to initiate the anticoagulant pathway. Crystallographic investigations of the complex between thrombin and TMEGF456 did not show any changes in the thrombin active site. Therefore, research has focused recently on how TM may provide a docking site for the protein C substrate. Previous work, however, showed that when the thrombin active site was occupied with substrate analogues labeled with fluorophores, the fluorophores responded differently to active (TMEGF1-6) versus inactive (TMEGF56) fragments of TM. To investigate this further, we have carried out amide H/(2)H exchange experiments on thrombin in the presence of active (TMEGF45) and inactive (TMEGF56) fragments of TM. Both on-exchange and off-exchange experiments show changes in the thrombin active site loops, some of which are observed only when the active TM fragment is bound. These results are consistent with the previously observed fluorescence changes and point to a mechanism by which TM changes the thrombin substrate specificity in favor of protein C cleavage.  相似文献   

9.
Native antithrombin (AT) has an inactive reactive site loop conformation unless it is activated by a unique pentasaccharide fragment of heparin (H(5)). Structural data suggests that this may be due to preinsertion of two N-terminal residues of the reactive site loop of the serpin into the A-beta-sheet of the molecule. Relative to alpha(1)-antitrypsin, the reactive site loop of AT has three additional residues, Arg(399), Val(400), and Thr(401), at the C-terminal P' end of the loop. To determine whether a longer reactive site loop of AT is responsible for loop preinsertion in the native conformation, mutants of the serpin were expressed in which these residues were individually or in combination deleted. Kinetic analysis suggested that deletion of two residues, Val(400) and Thr(401), changed the solution equilibrium of the serpin in favor of the active conformation, thereby enhancing the inhibition of factor Xa by an order of magnitude independent of H(5). Interestingly, the reactivity of this mutant with thrombin was impaired by the same order of magnitude in the absence, but not in the presence of H(5). These results suggest that a longer reactive site loop in AT is responsible for its inactive native conformation toward factor Xa, while at same time AT requires this feature to regulate the activity of thrombin.  相似文献   

10.
Human activated protein C (APC) is a key component of a natural anticoagulant system that regulates blood coagulation. In vivo, the catalytic activity of APC is regulated by two serpins, alpha1-antitrypsin and the protein C inhibitor (PCI), the inhibition by the latter being stimulated by heparin. We have identified a heparin-binding site in the serine protease domain of APC and characterized the energetic basis of the interaction with heparin. According to the counter-ion condensation theory, the binding of heparin to APC is 66% ionic in nature and comprises four to six net ionic interactions. To localize the heparin-binding site, five recombinant APC variants containing amino acid exchanges in loops 37, 60, and 70 (chymotrypsinogen numbering) were created. As demonstrated by surface plasmon resonance, reduction of the electropositive character of loops 37 and 60 resulted in complete loss of heparin binding. The functional consequence was loss in heparin-induced stimulation of APC inhibition by PCI, whereas the PCI-induced APC inhibition in the absence of heparin was enhanced. Presumably, the former observations were due to the inability of heparin to bridge some APC mutants to PCI, whereas the increased inhibition of certain APC variants by PCI in the absence of heparin was due to reduced repulsion between the enzymes and the serpin. The heparin-binding site of APC was also shown to interact with heparan sulfate, albeit with lower affinity. In conclusion, we have characterized and spatially localized the functionally important heparin/heparan sulfate-binding site of APC.  相似文献   

11.
Rabbit thrombomodulin (TM) influences blood coagulation by serving as a cofactor for thrombin-induced protein C activation (activity a), by directly affecting the procoagulant activity of thrombin (activity b) and by accelerating the inhibition of thrombin by antithrombin III (AT III) (activity c). Although high molecular weight cationic compounds, such as poly-L-lysine and the ionophore-releasate from human platelets, only partly affected activity a in a concentration-dependent manner, activities b and c, however, were almost totally inhibited by these cationic compounds. Likewise, a heparin- and dermatan sulfate-binding peptide which represents a portion of the glycosaminoglycan-binding domain of vitronectin (VN) selectively inhibited activities b and c, indicating the presence of clustered acidic domain(s) in TM responsible for these activities. While heparinase or heparitinase did not affect rabbit TM function at all, digestion of rabbit TM with chondroitin ABC-lyase abolished activities b and c, whereas activity a remained unaffected. Modification of rabbit TM with chondroitin ABC-lyase was associated with a decrease in molecular mass of the receptor by about 10 kDa and a 2- to 3-fold decrease in affinity to thrombin as deduced from direct binding studies. These results suggest that at least two acidic thrombin binding domains are present in rabbit TM, whereby a dermatan sulfate-like glycosaminoglycan moiety constitutes the secondary binding domain for thrombin, eliciting both the direct as well as the AT III-dependent anticoagulant function of rabbit TM (activities b and c) but not protein C activation (activity a). In contrast to rabbit TM, human TM isolated from placenta only showed weak activities b and c. These differences in reactivity of TM from different sources appeared to be due to the masking (or absence) of the proposed secondary thrombin binding site in human TM, since VN could be identified as a major contamination in the human TM preparation as revealed by enzyme-linked immunosorbent assay and Western blot analysis. In addition, the major part of human TM could be immunoprecipitated by monospecific antibodies to VN. These findings indicate a possible modulatory function for VN in the human thrombin-TM system.  相似文献   

12.
Rezaie AR 《Biochemistry》2006,45(16):5324-5329
It has been demonstrated that a unique pentasaccharide fragment of heparin (H5) activates AT by exposing an exosite on the serpin that is a recognition site for interaction with the basic autolysis loop (residues 143-154) of fXa. In support of this, the substitution of Arg-150 of fXa with Ala (R150A) impaired the reactivity of the mutant with AT by 1 order of magnitude specifically in the presence H5. To understand the mechanism by which heparin activation of AT improves the reactivity of the serpin with fXa, the H5-catalyzed reaction of AT with fXa, fXa R150A, and fXa S195A was studied using rapid kinetic, surface plasmon resonance, and competitive binding methods. The pseudo-first-order rate constants for the H5-catalyzed AT inhibition of both fXa and fXa R150A exhibited a linear dependence on the serpin concentration, thereby yielding second-order rate constants of 1.0 x 10(6) and 1.5 x 10(5) M(-)(1) s(-)(1), respectively. On the other hand, an approximately 70-saccharide, high-affinity heparin-catalyzed AT inhibition of both fXa derivatives showed a saturable dependence on the inhibitor concentration, yielding an identical rate constant of approximately 20 s(-)(1), but different ternary fXa-heparin-AT dissociation constants (K(E,ATH)) of approximately 130 and approximately 1780 nM for wild-type and R150A fXa, respectively. Competitive kinetic and surface plasmon resonance binding studies using the catalytically inactive S195A mutant of fXa yielded dissociation constants of 255 and 610 nM, respectively, for the mutant protease interaction with the AT-H5 complex. These results suggest that H5 enhances the reactivity of AT with fXa primarily by lowering the K(E,ATH) for the formation of a Michaelis-type serpin-protease encounter complex.  相似文献   

13.
-Thrombin is a trypsin-like serine proteinase involved in blood coagulation and wound repair processes. Thrombin interacts with many macromolecular substrates, cofactors, cell-surface receptors, and blood plasma inhibitors. The three-dimensional structure of human -thrombin shows multiple surface exosites for interactions with these macromolecules. We used these coordinates to probe the interaction of thrombin's active site and two exosites, anion-binding exosite-I and -II, with the blood plasma serine proteinase inhibitors (serpins) antithrombin (AT), heparin cofactor II (HC), and protein C inhibitor (PCI). Heparin, a widely used anticoagulant drug, accelerates the rate of thrombin inhibition by AT, PCI, and HC. Thrombin Quick II is a dysfunctional thrombin mutant with a Gly 226 Val substitution in the substrate specificity pocket. We found that thrombin Quick II was inhibited by HC, but not by AT or PCI. Molecular modeling studies suggest that the larger Val side chain protrudes into the specificity pocket, allowing room for the smaller P1 side chain of HC (Leu) but not the larger P1 side chain of AT and PCI (both with Arg). T -Thrombin and thrombin Quick I (Arg 67 Cys) are both altered in anion-binding exosite-I, yet bind to heparin-Sepharose and can be inhibited by AT, HC, and PCI in an essentially normal manner in the absence of heparin. In the presence of heparin, inhibition of these altered thrombins by HC is greatly reduced compared to both AT and PCI. -Thrombin with chemically modified lysines in both anion-binding exosite-I and -II has no heparin accelerated thrombin inhibition by either AT or HC. Thrombin lysine-modified in the presence of heparin has protected residues in anion-binding exosite-II and the loss of heparin-accelerated inhibition by HC is greater than that by AT. Collectively, these results suggest differences in serpin reactive site recognition by thrombin and a more complicated mechanism for heparin-accelerated inhibition by HC compared to either AT or PCI.Abbreviations used: AT, antithrombin; HC, heparin cofactor II; PCI, protein C inhibitor; serpin(s), serine proteinase inhibitor(s); FPRck, D-Phe-Pro-Arg-chloromethyl ketone; FPLck, D-Phe-Pro-Leu-chloromethyl ketone; HEPES, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid); SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; HNP, 20mM HEPES, 150mM NaCl, 0.1% (w/v) poly(ethyleneglycol) (Mr = 8000) buffer atpH 7.4; Unp-PLPT, unprotected pyridoxal 5phosphate modified-thrombin; HPPLPT, heparin-protected pyridoxal 5phosphate modifiedthrombin.  相似文献   

14.
Thrombomodulin (TM) is as essential cofactor in protein C activation by thrombin. To investigate the cofactor effect of TM on the P3-P3' binding specificity of thrombin, we prepared a Gla-domainless protein C (GDPC) and an antithrombin (AT) mutant in which the P3-P3' residues of both molecules were replaced with the corresponding residues of the factor Xa cleavage site in prethrombin-2. TM is known to interact with GDPC, but not AT in the complex. Thrombin did not react with either mutant in the absence of a cofactor. While the thrombin-TM complex also did not react with the AT mutant, it activated the GDPC mutant with a normal k(cat), but an approximately 4-fold impaired K(m) value. Further studies revealed that the active-site directed inhibitor p-aminobenzamidine acts as a competitive inhibitor of both wild-type and GDPC mutant in reaction with the thrombin-TM complex. These results suggest that the interaction of the P3-P3' residues of GDPC with the active-site pocket of the thrombin-TM complex makes a dominant contribution to the binding specificity of the reaction. Moreover, the observation that the GDPC mutant, but not the AT mutant, functions as an effective substrate for the thrombin-TM complex suggests that GDPC interaction with the thrombin-TM complex may be associated with the alteration of the conformation of the P3-P3' residues of the substrate.  相似文献   

15.
Protein C inhibitor (PCI) is a multifunctional serpin with wide ranging protease inhibitory functions, unique cofactor binding activities, and potential non-inhibitory functions akin to the hormone-transporting serpins. To gain insight into the molecular mechanisms utilized by PCI we developed a robust expression system in Escherichia coli and solved the crystal structure of PCI in its native state. The five monomers obtained from our two crystal forms provide an NMR-like ensemble revealing regions of inherent flexibility. The reactive center loop (RCL) of PCI is long and highly flexible with no evidence of hinge region incorporation into beta-sheet A, as seen for other heparin-binding serpins. We adapted an extrinsic fluorescence method for determining dissociation constants for heparin and find that the N-terminal tail of PCI and residues adjacent to helix H are not involved in heparin binding. The minimal heparin length capable of tight binding to PCI was determined to be chains of eight monosaccharide units. A large hydrophobic pocket occupied by hydrophobic crystal contacts was found in an analogous position to the hormone-binding site in thyroxine-binding globulin. In conclusion, the data presented here provide important insights into the mechanisms by which PCI exercises its multiple inhibitory and non-inhibitory functions.  相似文献   

16.
Heparin activates the primary serpin inhibitor of blood clotting proteinases, antithrombin, both by an allosteric conformational change mechanism that specifically enhances factor Xa inactivation and by a ternary complex bridging mechanism that promotes the inactivation of thrombin and other target proteinases. To determine whether the factor Xa specificity of allosterically activated antithrombin is encoded in the reactive center loop sequence, we attempted to switch this specificity by mutating the P6-P3' proteinase binding sequence excluding P1-P1' to a more optimal thrombin recognition sequence. Evaluation of 12 such antithrombin variants showed that the thrombin specificity of the serpin allosterically activated by a heparin pentasaccharide could be enhanced as much as 55-fold by changing P3, P2, and P2' residues to a consensus thrombin recognition sequence. However, at most 9-fold of the enhanced thrombin specificity was due to allosteric activation, the remainder being realized without activation. Moreover, thrombin specificity enhancements were attenuated to at most 5-fold with a bridging heparin activator. Surprisingly, none of the reactive center loop mutations greatly affected the factor Xa specificity of the unactivated serpin or the several hundred-fold enhancement in factor Xa specificity due to activation by pentasaccharide or bridging heparins. Together, these results suggest that the specificity of both native and heparin-activated antithrombin for thrombin and factor Xa is only weakly dependent on the P6-P3' residues flanking the primary P1-P1' recognition site in the serpin-reactive center loop and that heparin enhances serpin specificity for both enzymes through secondary interaction sites outside the P6-P3' region, which involve a bridging site on heparin in the case of thrombin and a previously unrecognized exosite on antithrombin in the case of factor Xa.  相似文献   

17.
Monoclonal antibodies for human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C, were prepared and their epitopes characterized. All six antibodies (MFTM-1-MFTM-6) bound to an elastase-digested active fragment of thrombomodulin, which contains six consecutive EGF domains. Binding of thrombomodulin to these antibodies did not depend on Ca2+ concentration. MFTM-4, MFTM-5, and MFTM-6 strongly inhibited protein C activation by thrombin and thrombomodulin. MFTM-4 and MFTM-5 inhibited thrombin binding to fixed thrombomodulin and bound to a recombinant mutant EGF456 protein, which contained the fourth, fifth, and sixth EGF domains of thrombomodulin. However, MFTM-6 did not inhibit thrombin binding to thrombomodulin and did not bind to EGF456 protein. Binding of thrombomodulin to fixed MFTM-4 or MFTM-5 was competitively inhibited by a recombinant mutant EGF45 protein which contained the fifth and sixth EGF-domains. These results suggest that epitopes of MFTM-4 and MFTM-5 are located in the fifth EGF domain of thrombomodulin. Thus, the binding site for thrombin is located in the fifth EGF domain. These results also suggest that an epitope for MFTM-6 is located at a region near the binding site for gamma-carboxyglutamic acid residues of protein C via Ca2+ on thrombomodulin.  相似文献   

18.
Localization of thrombomodulin-binding site within human thrombin   总被引:3,自引:0,他引:3  
A binding site for thrombomodulin on human thrombin (alpha-thrombin) was elucidated by identifying an epitope for a monoclonal antibody for thrombin (MT-6) which inhibited the activation of protein C by the thrombin-thrombomodulin complex by directly inhibiting the binding of thrombin to thrombomodulin. An 8.5-kDa fragment isolated by digestion of thrombin with Staphylococcus aureus V8 protease followed by reversed-phase high performance liquid chromatography (HPLC) and a peptide isolated by reversed-phase HPLC after reduction of the 8.5-kDa fragment, which was composed of three peptides linked by disulfide-bonds, bound directly to MT-6 and thrombomodulin. The amino acid sequence of the peptide coincided with the sequence of residues Thr-147 to Asp-175 of the B-chain of thrombin. A synthetic peptide corresponding to Thr-147 to Ser-158 of the B-chain inhibited the binding of thrombin to thrombomodulin. Elastase-digested thrombin, which was cleaved between Ala-150 and Asn-151, lost its binding affinity for both MT-6 and thrombomodulin. These findings indicate that the binding site for thrombomodulin is located within the sequence between Thr-147 and Ser-158 of the B-chain.  相似文献   

19.
A pentasaccharide (PS) fragment of heparin capable of activating antithrombin (AT) markedly accelerates the inhibition of factor Xa by AT, but has insignificant effect on inhibition of thrombin. For inhibition of thrombin, the bridging function of a longer polysaccharide chain is required to accelerate the reaction. To study the basis for the similar reactivity of thrombin with the native or heparin-activated conformers of AT, several residues surrounding the active site pocket of thrombin were targeted for mutagenesis study. Leu99 and Glu192, the variant residues influencing the S2 and S3 subsite specificity of thrombin were replaced with Tyr and Gln. The Tyr60a, Pro60b, Pro60c, and Trp60d residues forming part of the S2 specificity pocket were deleted from the B-insertion loop of the wild-type and Leu99/Glu192 --> Tyr/Gln thrombins. Kinetic studies indicated that the reactivities of all mutants with AT were moderately or severely impaired. Although heparin largely corrected the defect in reactivities, it also markedly elevated the stoichiometries of inhibition with the mutants. Interestingly, PS also accelerated AT inhibition of the mutants 5-68-fold, suggesting that the mutants are able to discriminate between the native and activated conformers of AT. Based on these results and the recent crystal structure determination of AT in complex with PS, a model for thrombin-AT interaction is proposed in which the S2 and S3 subsite residues of thrombin are critical for recognition of the P2 and P3 residues of AT in the native conformation. In the activated conformation, other residues are made accessible for interaction with the protease, and the similar reactivity of thrombin with the native and heparin-activated conformers of AT may be coincidental. The results further suggest that the S2 and S3 subsite residues are crucial in controlling the partitioning of the thrombin-AT intermediate into the alternative inhibitory or substrate pathways of the reaction.  相似文献   

20.
Plasminogen activator inhibitor type 1 (PAI-1), the fast-acting inhibitor of tissue-type plasminogen activator (t-PA) and urokinase (u-PA), is a member of the serpin superfamily of proteins. Both in plasma and in the growth substratum of cultured endothelial cells, PAI-1 is associated with its binding protein vitronectin, resulting in a stabilization of active PAI-1. Recently, it has been demonstrated that the PAI-1-binding site on vitronectin is adjacent to a heparin-binding site (Preissner et al., 1990). Furthermore, it can be deduced that the amino acid residues, proposed to mediate heparin binding in the serpins antithrombin III and heparin cofactor II, are conserved in PAI-1. Consequently, here we have investigated whether PAI-1 also interacts with heparin. At pH 7.4, PAI-1 quantitatively binds to heparin-Sepharose and can be eluted with increasing [NaCl]. Binding of PAI-1 to heparin-Sepharose can be efficiently competed with heparin in solution (IC50, 7 microM). In the presence of heparin, the protease specificity of PAI-1 toward thrombin is substantially increased. This is shown by (i) quenching of thrombin activity of PAI-1 in the presence of heparin and (ii) induction of the formation of SDS-stable complexes between thrombin and PAI-1 by heparin. In a dose response curve, both effects reached a maximum at approximately 1 unit/mL and then diminished again upon further increasing the heparin concentration, strongly suggesting a template mechanism as an explanation for the observed effect. In contrast to vitronectin, heparin does not stabilize the active conformation of PAI-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号