首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li Z  Tuteja G  Schug J  Kaestner KH 《Cell》2012,148(1-2):72-83
Hepatocellular carcinoma (HCC) is sexually dimorphic in both rodents and humans, with significantly higher incidence in males, an effect that is dependent on sex hormones. The molecular mechanisms by which estrogens prevent and androgens promote liver cancer remain unclear. Here, we discover that sexually dimorphic HCC is completely reversed in Foxa1- and Foxa2-deficient mice after diethylnitrosamine-induced hepatocarcinogenesis. Coregulation of target genes by Foxa1/a2 and either the estrogen receptor (ERα) or the androgen receptor (AR) was increased during hepatocarcinogenesis in normal female or male mice, respectively, but was lost in Foxa1/2-deficient mice. Thus, both estrogen-dependent resistance to and androgen-mediated facilitation of HCC depend on Foxa1/2. Strikingly, single nucleotide polymorphisms at FOXA2 binding sites reduce binding of both FOXA2 and ERα to their targets in human liver and correlate with HCC development in women. Thus, Foxa factors and their targets are central for the sexual dimorphism of HCC.  相似文献   

3.
4.
5.
6.
CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is a key component in endoplasmic reticulum (ER) stress-mediated apoptosis. The goal of the study was to investigate the role of CHOP in cholestatic liver injury. Acute liver injury and liver fibrosis were assessed in wild-type (WT) and CHOP-deficient mice following bile duct ligation (BDL). In WT livers, BDL induced overexpression of CHOP and Bax, a downstream target in the CHOP-mediated ER stress pathway. Liver fibrosis was attenuated in CHOP-knockout mice. Expression levels of alpha-smooth muscle actin and transforming growth factor-beta1 were reduced, and apoptotic and necrotic hepatocyte death were both attenuated in CHOP-deficient mice. Hepatocytes were isolated from WT and CHOP-deficient mice and treated with 400 microM glycochenodeoxycholic acid (GCDCA) for 8 h to examine bile acid-induced apoptosis and necrosis. GCDCA induced overexpression of CHOP and Bax in isolated WT hepatocytes, whereas CHOP-deficient hepatocytes had reduced cleaved caspase-3 expression and a lower propidium iodide index after GCDCA treatment. In conclusion, cholestasis induces CHOP-mediated ER stress and triggers hepatocyte cell death, and CHOP deficiency attenuates this cell death and subsequent liver fibrosis. The results demonstrate an essential role of CHOP in development of liver fibrosis due to cholestatic liver damage.  相似文献   

7.
8.
9.
10.
11.
Portal fibroblasts are mesenchyme-derived fibroblasts surrounding the bile ducts, and activated into portal myofibroblasts (pMF) during cholestatic liver injury. pMF express α-smooth muscle actin (α-SMA) and produce the fibrogenic extracellular matrix (ECM) collagen type I and fibronectin, playing important roles in portal fibrosis. A cholestatic bile duct-ligated (BDL) model is characterized by impaired hepatobiliary excretion of bile, leading to increased bile acid accumulation. Accumulation of bile acids is known to induce endoplasmic reticulum (ER) stress leading to liver damage and cell death. Additionally, a BDL fibrotic model is also associated with upregulation of CCN (CYR61, CTGF and NOV) matricellular proteins and reported to induce ER stress both in vitro and in vivo. To explore the effects of CCN proteins, we used adenovirus-mediated CCN1-4 (Ad-CCN1-4) gene transfers into cultured pMF. Overexpression of CCN proteins leads to protein accumulation in the ER lumen, causing ER stress and unfolded protein response (UPR). We further found ER stress and UPR to mitigate fibrogenesis in pMF by decreased cellular production of fibronectin, collagen type 1 and α-SMA. In this scenario, Tauroursodeoxycholic acid, a pharmaceutical chaperone and ER stress inhibitor, attenuated Ad-CCN1-4 induced pMF apoptosis and restored collagen and fibronectin levels. Since hepatic fibrogenesis is accompanied by ER stress and upregulation of CCN proteins in a BDL, we further evaluated ER stress responses after Ad-CCN1 gene transfer in such a model and found overexpressed CCN1 to enhance the ER stress-associated proteins BiP and CHOP with positive cleaved caspase 3 and 9 staining in periportal nonparenchymal cells. This indicates that these nonparenchymal cells, most likely pMF, have the tendency to undergo apoptosis during later stages of BDL. Ad-CCN1 transduction furthermore sensitized pMF for ER stress and apoptosis. We suggest that CCN proteins are key factors in the fibrotic microenvironment impacting pMF survival during fibrogenesis and pMF apoptosis during fibrosis resolution.  相似文献   

12.
13.
14.
FOXA2 has been known to play important roles in liver functions in rodents. However, its role in human hepatocytes is not fully understood. Recently, we generated FOXA2 mutant induced pluripotent stem cell (FOXA2−/−iPSC) lines and illustrated that loss of FOXA2 results in developmental defects in pancreatic islet cells. Here, we used FOXA2−/−iPSC lines to understand the role of FOXA2 on the development and function of human hepatocytes. Lack of FOXA2 resulted in significant alterations in the expression of key developmental and functional genes in hepatic progenitors (HP) and mature hepatocytes (MH) as well as an increase in the expression of ER stress markers. Functional assays demonstrated an increase in lipid accumulation, bile acid synthesis and glycerol production, while a decrease in glucose uptake, glycogen storage, and Albumin secretion. RNA-sequencing analysis further validated the findings by showing a significant increase in genes associated with lipid metabolism, bile acid secretion, and suggested the activation of hepatic stellate cells and hepatic fibrosis in MH lacking FOXA2. Overexpression of FOXA2 reversed the defective phenotypes and improved hepatocyte functionality in iPSC-derived hepatic cells lacking FOXA2. These results highlight a potential role of FOXA2 in regulating human hepatic development and function and provide a human hepatocyte model, which can be used to identify novel therapeutic targets for FOXA2-associated liver disorders.Subject terms: Induced pluripotent stem cells, Stem-cell differentiation  相似文献   

15.
16.
杨晶  倪佳良  高越颖 《菌物学报》2021,40(5):1160-1169
本研究探讨虫草素对α-萘异硫氰酸酯(ANIT)诱导胆汁淤积性肝损伤的改善作用及保护机制.首先建立ANIT诱导胆汁淤积性肝损伤模型,通过检测血生化指标、HE染色观察肝脏组织病理的情况评价虫草素的保肝作用,进一步通过Western blot和实时定量PCR技术分析胆汁酸合成、分解、转运以及炎症相关通路的变化.结果 显示,与...  相似文献   

17.
Human and animal model data show that maternal obesity promotes nonalcoholic fatty liver disease in offspring and alters bile acid (BA) homeostasis. Here we investigated whether offspring exposed to maternal obesogenic diets exhibited greater cholestatic injury. We fed female C57Bl6 mice conventional chow (CON) or high fat/high sucrose (HF/HS) diet and then bred them with lean males. Offspring were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 2 weeks to induce cholestasis, and a subgroup was then fed CON for an additional 10 days. Additionally, to evaluate the role of the gut microbiome, we fed antibiotic-treated mice cecal contents from CON or HF/HS offspring, followed by DDC for 2 weeks. We found that HF/HS offspring fed DDC exhibited increased fine branching of the bile duct (ductular reaction) and fibrosis but did not differ in BA pool size or intrahepatic BA profile compared to offspring of mice fed CON. We also found that after 10 days recovery, HF/HS offspring exhibited sustained ductular reaction and periportal fibrosis, while lesions in CON offspring were resolved. In addition, cecal microbiome transplant from HF/HS offspring donors worsened ductular reaction, inflammation, and fibrosis in mice fed DDC. Finally, transfer of the microbiome from HF/HS offspring replicated the cholestatic liver injury phenotype. Taken together, we conclude that maternal HF/HS diet predisposes offspring to increased cholestatic injury after DDC feeding and delays recovery after returning to CON diets. These findings highlight the impact of maternal obesogenic diet on hepatobiliary injury and repair pathways during experimental cholestasis.  相似文献   

18.
19.
BackgroudCholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear.PurposeThis study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro.MethodsThe ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro.ResultsPicroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II.ConclusionOur findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号