首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acute incubation procedure, using explanted normal rat hemipituitaries pretreated with fresh plasma obtained from pituitary donor animals, was employed to further investigate the in vitro stimulation of prolactin (PRL release by thyrotropin-releasing hormone (TRH). Pretreatment with dopamine (0.1 microgram/ml) caused a 30-50% decrease in the amount of PRL released into incubation media; the inhibitory effect of dopamine was not reversed by treatment with 0.5-6.0 ng. TRH, although these TRH concentrations consistently stimulated PRL release from pituitaries not exposed to dopamine. Treatment with thyroxine (10(-6) to 10(-5) M) showed a competitive inhibition of thyrotropin release by TRH (0.5 ng), but was without effect on TRH-stimulated PRL release. Cycloheximide (100 microgram/ml) blocked a net increase in PRL levels. TRH, nevertheless, significantly increased PRL release in the presence of cycloheximide. The results indicate that neither dopamine nor thyroxine compete with TRH in causing PRL release, and that the TRH stimulation of PRL release is unrelated to ongoing levels of hormone synthesis.  相似文献   

2.
Cyclosporine (CyA) is extremely useful as an immunosuppressant and it is believed that at least some of its actions are due to antagonizing PRL effects. To determine whether the reported ability of CyA to inhibit gonadotropin release can be modified by PRL, we have examined the effects of treatment of normal and hyperprolactinemic rats with CyA in vivo on the release of LH, FSH and PRL from their pituitaries in vitro. Hyperprolactinemia was induced by implantation of capsules containing diethylstilbestrol (DES) and the animals were examined while the capsules were still in place (DES-IN) or after they had been removed (DES-OUT). Treatment with CyA significantly reduced plasma LH levels in control DES-IN rats without reducing basal LH release from the pituitaries of these animals in vitro. In the DES-IN rats, CyA exposure in vivo did not modify plasma PRL levels, but reduced PRL release in vitro, and interfered with the inhibitory action of dopamine (DA) on PRL release. The effect of DA on gonadotropin release in vitro was modified by CyA treatment. Administration of CyA failed to antagonize the suppressive effects of hyperprolactinemia on plasma LH and FSH levels or on the basal rates of gonadotropin release by incubated pituitaries. We conclude that CyA can reduce PRL release but does not interfere with the actions of PRL on anterior pituitary function.  相似文献   

3.
Prolactin (PRL) release was studied in female rats during midlactation using pharmacologic manipulations designed to mimic the hypothalamic effects of suckling. In the first experiment pituitary dopamine (DA) receptors were blocked by sulpiride (10 micrograms/rat i.v.). One hour later, thyrotropin-releasing hormone (TRH, 1.0 micrograms/rat i.v.) was given to induce PRL release. TRH released significantly more PRL following DA antagonism than when no DA antagonism was produced, suggesting that DA receptor blockade increased the sensitivity of the AP to TRH. In a second experiment, VIP (25 micrograms/rat) increased plasma prolactin 3-4 fold but this effect was not enhanced significantly by prior dopamine antagonism with sulpiride. We conclude that dopamine antagonism enhances the PRL releasing effect of TRH but not VIP in lactating rats.  相似文献   

4.
Thyrotropin-releasing hormone (TRH) stimulates the prolactin (PRL) release from normal lactotrophs or tumoral cell line GH3. This effect is not observed in many patients with PRL-secreting tumors. We examined in vitro the PRL response to TRH on cultured human PRL-secreting tumor cells (n = 10) maintained on an extracellular matrix in a minimum medium (DME + insulin, transferrin, selenium). Addition of 10(-8) M TRH to 4 X 10(4) cells produced either no stimulation of PRL release (n = 6) or a mild PRL rise of 32 +/- (SE) 11% (n = 4) when measured 1, 2 and 24 h after TRH addition. When tumor cells were preincubated for 24 h with 5 X 10(-11) M bromocriptine, a 47 +/- 4% inhibition of PRL release was obtained. When TRH (10(-8) M) was added, 24 h after bromocriptine, it produced a 85 +/- 25% increase of PRL release (n = 8). This stimulation of PRL release was evident when measured 1 h after TRH addition and persisted for 48 h. The half maximal stimulatory effect of TRH was 2 X 10(-10) M and the maximal effect was achieved at 10(-9) M TRH. When tumor cells were pretreated with various concentrations of triiodothyronine (T3), the PRL release was inhibited by 50% with 5 X 10(-11) M T3 and by 80% with 10(-9) M T3. Successive addition of TRH (10(-8) M) was unable to stimulate PRL release at any concentration of T3. The addition of 10(-8) M estradiol for up to 16 days either stimulated or had no effect upon the PRL basal release according to the cases. In all cases tested (n = 4), preincubation of the tumor cells with estradiol (10(-8) M) modified the inhibition of PRL release induced by bromocriptine with a half-inhibitory concentration displaced from 3 X 10(-11) M (control) to 3 X 10(-10) M (estradiol). These data demonstrate that the absence of TRH effect observed in some human prolactinomas is not linked to the absence of TRH receptor in such tumor cells. TRH responsiveness is always restored in the presence of dopamine (DA) at appropriate concentration. This TRH/DA interaction seems specific while not observed under T3 inhibition of PRL. Furthermore, estrogens, while presenting a variable stimulatory effect upon basal PRL, antagonize the dopaminergic inhibition of PRL release.  相似文献   

5.
We have examined the effects of a single subcutaneous injection of an LHRH agonist, D-Trp-6-LHRH, in biodegradable microcapsules of poly(DL-lactide-co-glycolide) on plasma gonadotropin and prolactin (PRL) levels in castrated and in castrated-hypophysectomized-pituitary grafted (CAST-APX-GRAFT) male rats. The results were compared to the effects of daily injections of the same LHRH agonist dissolved in saline. In castrated rats, there were no significant alterations in plasma LH or PRL levels during the 10 days following the injection of LHRH agonist microcapsules, while FSH levels were generally reduced. In castrated males given daily injections of 6 micrograms of LHRH agonist in saline, plasma LH levels were significantly reduced while plasma PRL levels were not changed. In CAST-APX-GRAFT rats, both D-Trp-6-LHRH microcapsules and daily LHRH agonist injections appeared to increase plasma PRL levels. The pattern of changes in PRL release in both groups was similar, with levels on day 6 being significantly higher than those measured on days 1, 3 and 10 after onset of treatment. As expected, LH and FSH levels in these animals were extremely low. Immunoreactive D-Trp-6-LHRH was consistently detectable in the plasma of CAST-APX-GRAFT animals after microcapsule administration, whereas in animals given daily injections of this agonist in saline, its plasma concentrations were often below the detectability limit of the employed assay. These findings suggest that the LHRH agonist, D-Trp-6-LHRH, is capable of causing a short term stimulation of PRL release from ectopic pituitaries. Elevation of plasma LH levels is apparently not required for this effect.  相似文献   

6.
Prolactin (PRL) and thyroid stimulating hormone (TSH) plasma concentrations were measured during the latter part of the dark period in early and mid-late pregnancy in the rat. On Days 4-5 and 7-8 of pregnancy, plasma PRL concentrations surged between 22:00 and 06:00 hr and TSH values increased between 22:00 and 02:00 hr. While the TSH pattern was maintained during the second-half of pregnancy, surges in PRL release ceased and PRL levels remained at less than 10 ng/ml. The effects of thyrotropin releasing hormone (TRH) administration on PRL and TSH secretion were then measured to determine whether the second-half of pregnancy is associated with a decrease in sensitivity to an agent that can stimulate PRL release. Injection (iv) of cannulated pregnant rats with a low dosage (20 ng) of TRH stimulated a twofold increase in plasma TSH during both early (Days 5-9) and later (Days 14-18) pregnancy but did not change plasma PRL levels. Treatment with a high dosage (2 micrograms) of TRH induced a sixfold rise in plasma TSH during both phases of gestation. The higher dose of TRH also stimulated elevations in plasma PRL during early and mid-late pregnancy; however, both the absolute increase in the amount of PRL in plasma and the percentage increase over baseline levels were greater from Days 5-9 than from Days 14-16 of gestation. These data indicate that the neuroendocrine sensitivity to factors that stimulate PRL secretion changes as pregnancy progresses, and suggest that nocturnal secretion of PRL and TSH during pregnancy may be regulated, in part, by a common trophic factor.  相似文献   

7.
Intravenous thyrotrophin releasing hormone (TRH) caused a 6.5-fold increase in plasma prolactin (PRL) in rats carrying implanted pituitary tumours. Vasoactive intestinal polypeptide (VIP) had no effect, but TRH given after VIP raised TRH stimulated secretion 13-fold above basal. 31P NMR spectroscopy showed that VIP caused a decrease in high energy metabolites (depleted phosphocreatine, elevated inorganic phosphate and lowered intracellular pH). TRH alone caused a similar but smaller effect; given after VIP, it caused no detectable depletion. We suggest that the changes in high energy metabolite concentrations reflect increased cellular energy consumption consistent with a priming process (stage 1) in PRL secretion, followed by hormone release (stage 2). VIP induces stage 1 whereas RTH induced both stages.  相似文献   

8.
Prolactin (PRL) release was studied in mid-lactational female rats by comparing the stimulatory influence of suckling to a drug protocol that mimics the effect of suckling on the anterior pituitary (AP). Animals that nursed pups for 15 minutes and were allowed to suckle again 60 minutes later for 10 minutes, released PRL effectively during both nursing episodes; however, in animals that received the dopamine (DA) agonist 2-Br-alpha-ergocryptine maleate (CB-154, 0.5 mg/rat i.v.) at the end of the first nursing period did not show an increase in plasma PRL to a second suckling stimulation by the pups. When thyrotropin releasing hormone (TRH) was substituted for the second suckling period in CB-154 treated rats, a slight increase in plasma PRL occurred 5 minutes after the injection. In a third study we transiently blocked the action of DA at the AP by injecting the DA antagonist domperidone (0.01 mg/rat i.v.), followed 5 minutes later by the administration of CB-154. One hour later animals were either allowed to suckle pups for 10 minutes or were injected with TRH. Treatment with TRH resulted in an 11 fold increase in plasma PRL but suckling was completely ineffective in inducing PRL release. These data suggest that the lack of PRL release to suckling in CB-154 treated rats was due to inhibitory effects of CB-154 on neural mechanisms which link nursing to PRL release. In addition, the data show that pharmacologic DA antagonism affects TRH releasable PRL more than does suckling. This may be due to a reduction, by suckling, of the pool of PRL that is available to be released by TRH administration.  相似文献   

9.
Inhibitory effects of cysteamine on neuroendocrine function   总被引:1,自引:0,他引:1  
The action of cysteamine on anterior pituitary hormone secretion was studied in vivo using conscious, freely moving male rats and in vitro using anterior pituitary cells in monolayer culture. Administration of 500 micrograms cysteamine into the lateral cerebral ventricles of normal rats caused the complete inhibition of pulsatile GH secretion for a minimum of 6 h. This treatment also significantly decreased plasma concentrations of LH for at least 6 h in orchiectomized rat, TSH in short-term (0.5 month) thyroidectomized rats, and PRL in long-term (6 months) thyroidectomized rats. The in vivo stimulation of GH, LH, TSH and PRL with their respective releasing hormones 60 min after administration of cysteamine was not different from the response observed in rats pretreated with saline except for PRL where cysteamine pretreatment significantly inhibited the expected PRL increase. In vitro, 1 mM cysteamine decreased basal and TRH stimulated PRL release while not affecting basal or stimulated GH, LH, TSH and ACTH secretion. These data demonstrate the dramatic and wide-ranging effects of cysteamine on anterior pituitary hormone secretion. This action appears to be mediated through hypothalamic pathways for GH, LH and TSH and through a pituitary pathway for PRL.  相似文献   

10.
Ontogeny of serum and anterior pituitary gland PRL contents was investigated. Pituitary PRL concentrations were found to be low in fetus by 19th day of gestation and to rise slowly after birth with no sex differences being apparent until day 30. Adult levels were reached in males on day 15, while in females they were reached beyond this stage. Serum PRL levels exhibited a similar developmental pattern. In adult rats ether stress stimulated basal serum PRL significantly, with maximum effect one minute after onset of stress. The same pattern was seen with immature animals of 15-20 and 30 days of age. In contrast, in 2 or 6 day-old neonates, serum PRL concentrations remained unaffected by stress. This lack of responsiveness suggests the existence of a transient impairment of lactotrophs to respond to stressful stimuli during postnatal life. Adrenalectomy increased PRL release in adult and newborn rats from day 15 onward and potentiated the response of lactotrophs. Moreover, after adrenalectomy, 6 day-old rats became sensitive to ether stress, while acute treatment with dexamethasone abolished completely this response. In adult or 15 day-old neonates administration of TRH or sulpiride resulted in a marked increase in serum PRL levels. However, at 6 days TRH did not affect resting serum PRL concentrations significantly, whereas sulpiride remained efficient. Moreover, at this age, dopamine inhibited stress-induced PRL release and reduced the stimulatory effect of sulpiride.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In adult male Wistar rats submitted to a standardized noise stress, intravenous TRH induced a prolactin (PRL) secretory response. Prior IV naloxone administration not only lowered plasma PRL levels in those stressed rats but abolished also the stimulatory action of TRH. This effect was further studied by superfusion experiments on enriched PRL cell suspensions (70% lactotrophs) from female adult Wistar rats. Naloxone kept unaffected the basal PRL secretion but lowered significantly that induced by TRH. These experiments suggest a dual effect of naloxone on rat PRL secretion, one exerted on central opioid receptors lowering stress-related increased basal PRL levels, the other inhibiting the TRH-dependent PRL secretion exerted at the lactotroph level itself.  相似文献   

12.
D K Sarkar  N Miki  Q W Xie  J Meites 《Life sciences》1984,34(19):1819-1823
The effect of estradiol-17 beta (E2) on autofeedback regulation of prolactin (PRL) secretion was tested in ovariectomized rats after s.c. implantation of an (E2)-containing or empty silastic capsule, followed by i.v. injection of bovine PRL (b-PRL) or bovine serum albumin (BSA; 500 micrograms/100 g B.W.). Implantation of an E2 capsule (day 0), 2.5 mm or 5.0 mm in length, produced plasma E2 concentrations of 79 +/- 6 (9) and 140 +/- 8 pg/ml (8), respectively. Assay of PRL in plasma samples collected at 1 h intervals between 1100-1800 h on days 3, 4 and 5, after E2 capsule implantation showed a daily afternoon PRL surge. Empty capsule-treated rats did not show any afternoon PRL surge. Injection of b-PRL, but not BSA, at 1200 h on day 3 reduced basal PRL release both on days 3 and 4 in empty capsule-treated rats. In ovariectomized rats treated with a smaller E2 capsule (2.5 mm), b-PRL injection at 1200 h on day 3 reduced the amplitude of the afternoon surge of PRL and the total amount of PRL released on day 4. b-PRL, however, was ineffective in reducing PRL release in rats bearing the large E2 capsule (5.0 mm). These results suggest that high E2 levels in the blood can block the negative feedback action of PRL on PRL release.  相似文献   

13.
In cultured rat pituitary tumour cells (GH3 cells) the absence of extracellular Ca++ or addition of NaEGTA reduced spontaneous prolactin (PRL) release and abolished the stimulatory effect of thyroliberin (TRH). Readdition of CaCl2, but not of equimolar concentrations of MgCl2 increased spontaneous hormone release, and restored the effect of TRH. The calcium ionophore, A-23187, induced PRL release during normal calcium conditions, but not when an excess NaEGTA was present. TRH increased cyclic AMP accumulation in the presence and the absence of extracellular calcium. The effect of TRH on PRL release and cyclic AMP formation occured concomitantly with an increased efflux of 45Ca2+. Intracellular electrophysiological recordings from the same single cells before and after TRH activation showed increased frequency and duration of the Ca2+ dependent action potentials. We conclude that TRH elevates the Ca2+ influx which depends on the depolarizing action current, and this effect is probably linked to formation of cyclic AMP and PRL release.  相似文献   

14.
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.  相似文献   

15.
In order to study a possible direct action of LH-RH analogs on the pituitary lactotrophs, we investigated the effect of long-term in vivo pretreatment with D-Trp-6-LH-RH on in vitro secretion of PRL and luteinizing hormone (LH) by the pituitary glands from male and female rats. In vivo pretreatment with D-Trp-6-LH-RH (50 micrograms/day, SC) for 15 days greatly reduced basal in vitro PRL release (p less than 0.01) in female, but not in male pituitary glands. TRH-stimulated PRL secretion was not affected by pretreatment with D-Trp-6-LH-RH in female rats, but was impaired in male pituitaries. Acute in vitro exposure to D-Trp-6-LH-RH did not modify PRL secretion by female pituitary glands pretreated in vivo with the analog. However, this same in vivo pretreatment greatly decreased PRL release from male pituitaries (p less than 0.01). Basal in vitro LH release by male pituitary glands was partially lowered by in vivo pretreatment with D-Trp-6-LH-RH, as compared to controls (p less than 0.01), while basal LH release in female pituitaries remained at control levels. Finally, D-Trp-6-LH-RH-induced stimulation of in vitro LH release was severely impaired in female pituitaries (p less than 0.01) but only slightly reduced in the males.  相似文献   

16.
We have investigated dopamine (DA) receptors in estradiol-induced PRL-secreting pituitary tumors and intact pituitary tissue. Female rats were injected at 3-week intervals with 2 mg estradiol valerate (EV) or with diluent. After 21 weeks, adenomatous changes in the pituitary gland of EV-treated rats were seen and plasma PRL concentrations reached 2 micrograms/ml. Bromocriptine (2.5 mg/kg) was then administered for 1 month to half of the control rats and half of the rats bearing tumors. Anterior pituitary weight was increased in EV-treated rats compared to controls while the affinity and the density of DA receptors as assessed by [3H]spiperone binding remained unchanged. Bromocriptine (CB-154) induced a 70% decrease in the density of DA receptors without any change in affinity both in normal pituitaries and in tumors. Concurrently, the elevated plasma concentrations of PRL in the tumor bearing rats were decreased to control values following the CB-154 treatment. Our data suggest that rats with primary estrogen-induced PRL secreting tumors have normal pituitary DA receptors.  相似文献   

17.
To investigate the relationship of changes in cytosolic free calcium concentrations [( Ca2+]c) caused by TRH to changes in PRL secretion, we simultaneously monitored PRL release and [Ca2+]c, using the fluorescent Ca2+ indicator indo-1, in freshly isolated perifused cells from rat anterior pituitary glands. We found that a 30-sec pulse of 100 nM TRH triggered a transient spike of [Ca2+]c, but prolonged PRL release for up to 30 min; continuous administration of TRH caused a sustained elevation in [Ca2+]c, but the same pattern and amount of PRL release as that caused by the pulse of TRH. PRL secretion was refractory to further pulses of TRH given at 10-min intervals for 40 min, but did respond to a second pulse of TRH given 40 min after the first pulse with no intervening pulses. Pulses of TRH given every 10 min still triggered spikes of [Ca2+]c of the same magnitude as the first pulse, indicating that the cause of the refractory state must occur at a post-receptor step that is after the mobilization of [Ca2+]c. A 30-sec pulse of a high concentration of KCl caused a transient spike of [Ca2+]c and transient, not prolonged, release. Additional pulses of KCl cause progressively less PRL release, although the magnitude of the spikes in [Ca2+]c did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Pituitary prolactin (PRL) responses to 4-day continuous infusion of thyrotropin-releasing hormone (TRH) and vasoactive intestinal polypeptide (VIP) were investigated in unanesthetized male rats using Alzet osmotic minipumps. The TRH dose infused was 3.6 micrograms/day and the VIP dose was 32.8 micrograms/day. Infusion of TRH with osmotic pumps elevated the plasma PRL level compared to controls over the 4-day infusion period. However, mean levels of PRL tended to decrease during the 4-day infusion. On the other hand, continuous VIP infusion elicited a significant continuous PRL release over the 4-day infusion period. Thus, it may be said that the PRL responses to infused TRH and VIP were maintained during the 4-day infusion.  相似文献   

19.
1. The aim of this study was to compare the effects of acute amphetamine (AMPH) treatment and restraint stress on plasma level of prolactin (PRL) and PRL mRNA expression in the adenohypophysis in Sprague–Dawley and Lewis male rats, the latter known to have a deficient hypothalamo–pituitary-adrenal (HPA) axis.2. Both restraint stress and AMPH treatment (i.p. in a dose of 8 mg/kg of b.w.) were applied 15 or 30 min before termination of the experiment. Plasma PRL and corticosterone (CORT) were determined by radioimmunoassay. PRL mRNA expression was estimated by a dot-blot hybridization.3. Restraint stress and AMPH treatment induced a significant increase in theCORT plasma level, as an indicator of stress response. Compared to Sprague–Dawley rats, the magnitude of CORT increase after both stimuli was significantly lower in Lewis rats.4. Although restraint stress significantly increased the PRL plasma levels in both rat strains, AMPH treatment reduced the PRL levels in both rat strains. However, the changes of PRL plasma levels had another pattern in Lewis rats than in Sprague–Dawley rats. Control plasma PRL levels were significantly higher in Lewis rats, and in this rat strain AMPH treatment for 30 min increased the PRL levels as compared to the values obtained after AMPH treatment for 15 min.5. Expression of PRL mRNA in adenohypophysis by restraint stress and AMPH treatment had a similar pattern. After a 15-min lasting restraint stress, the expression of PRL mRNA was decreased insignificantly in both rat strains. AMPH treatment induced in Sprague–Dawley rats a significant decrease of PRL mRNA after a 15-min interval while after 30 min there was a significant increase. However, in Lewis rats AMPH failed to significantly change PRL mRNA.6. The results from the present study indicate that the mechanisms mediatingthe effects of acute restraint stress and acute AMPH treatment differ in PRL response in Sprague–Dawley and Lewis male rat strains. Differences in the observed responses in Lewis rats could be related to the deficient activity of HPA axis in this rat strain.  相似文献   

20.
The objectives of this study were to determine if heme oxygenase (HO), which catalyzes the degradation of heme and the formation of carbon monoxide (CO), is localized in the rat anterior pituitary and, if so, to determine if hemin (a substrate for HO) or chromium mesoporphyrin (CrMP) (an inhibitor of HO), alter pituitary gonadotropin and prolactin secretion. For localization of HO, sections of anterior pituitaries obtained from mature Holtzman Sprague-Dawley rats in different stages of the estrous cycle were immunostained for two of the HO isoforms, HO-1 and HO-2. The immunostaining for the inducible HO isoform (HO-1) was limited to discrete populations of pituitary cells, whereas the constitutive isoform (HO-2) had a more widespread distribution. The afternoon surge of leutinizing hormone (LH) in the plasma of ovariectomized, estradiol-treated rats was advanced by 2 hr after 7 days of treatment with CrMP (4 micro M/kg), and this effect was reversed when hemin (30 micro M/kg) was co-administered with CrMP. The afternoon follicle-stimulating hormone (FSH) surge was not affected by either treatment. In contrast, the afternoon prolactin (PRL) surge was completely blocked or delayed by CrMP treatment, and this effect was not reversed by hemin. In vitro perifusion of pituitary explants with CrMP also significantly reduced PRL release compared with secretion from untreated explants. In vitro gonadotropin-releasing hormone (GnRH)-stimulated FSH secretion was significantly increased from pituitary explants of ovariectomized, estradiol-treated rats treated in vivo with hemin but was unaffected by CrMP treatment, whereas GnRH-stimulated LH release was not affected by hemin but was increased by CrMP treatment. In conclusion, this study demonstrates that HO exists in the rat anterior pituitary gland, and that a substrate and an inhibitor of this enzyme alter the secretion of gonadotropins and PRL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号