首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Members of the genus Cryptosporidium are protozoan parasites that cause gastroenteritis in humans and animals and appear to be spread largely by the fecal-oral route. A method was developed for the concentration and detection of Cryptosporidium oocysts in water to assess their occurrence in the environment and potential for waterborne disease transmission. This method was developed by using spun polypropylene cartridge filters. Optimal conditions for concentration, filter elution, filter porosity, and detection were determined. Fluoresceinated monoclonal antibodies were used for oocyst detection. Experiments also were conducted to study the effect of flow rate, low oocyst numbers, and the addition of detergents on recovery and retention of oocysts. The method that was developed was sensitive enough to detect oocysts at levels of less than 1 per liter. Using this method, we isolated Cryptosporidium oocysts from secondarily treated sewage.  相似文献   

2.
The evolution of the use of improved, hydrophobic air filters in industrial plant germinators and fermentors is described, with the improved filters replacing Fiberglas media. The history and problems associated with use of Fiberglas media are described, as are the advantages of the hydrophobic filter.  相似文献   

3.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

4.
Detection of viable Cryptosporidium parvum oocysts by PCR.   总被引:4,自引:3,他引:1       下载免费PDF全文
PCR was used to detect and specifically identify a gene fragment from Cryptosporidium parvum. An 873-bp region of a 2,359-bp DNA fragment encoding a repetitive oocyst protein of C. parvum was shown to be specifically amplified in C. parvum. An excystation protocol before DNA extraction allowed the differentiation between live and dead Cryptosporidium parvum oocysts.  相似文献   

5.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

6.
Routine monitoring of Cryptosporidium oocysts in water using flow cytometry   总被引:10,自引:2,他引:8  
A flow cytometric method for the routine analysis of environmental water samples for the presence of Cryptosporidium oocysts has been developed. It uses a Coulter Epics Elite flow cytometer to examine water samples and to separate oocysts from contaminating debris by cell sorting. The sorted particles are then rapidly screened by microscopy. The method has been evaluated and compared with direct epifluorescence microscopy on 325 river, reservoir and drinking water samples. The technique was found to be more sensitive, faster and easier to perform than conventional epifluorescent microscopy for the routine examination of water samples for Cryptosporidium.  相似文献   

7.
Ultrasound in a liquid phase cause mass and heat transfer across the liquid through cavitational processes which act as nanoreactors to generate unstable mechanical equilibrium. The effect of 1 MHz ultrasound on the inactivation of Cryptosporidium parvum was investigated. Continuous irradiation of ultrasound (20 min) increased temperature due to cavitational phenomena. Ultrasound irradiation of liquid containing C. parvum showed significant quantitative changes in pH, temperature and inactivation of C. parvum (102.7 oocysts killed/s) with a minimum energy consumption (0.05 oocysts/s).  相似文献   

8.
Identification of Cryptosporidium oocysts in river water.   总被引:5,自引:7,他引:5       下载免费PDF全文
Water samples were collected from four rivers in Washington State and two rivers in California and examined for the presence of Cryptosporidium oocysts. Oocyst-sized particles were concentrated from 20-liter samples of water by membrane filtration, centrifugation, and differential sedimentation. The particle concentrate was then deposited on a 25-mm-diameter membrane filter for oocyst identification by indirect immunofluorescence assay. The identification procedure had a limit of detection of about five oocysts per liter. Cryptosporidium oocysts were found in each of 11 river water samples examined. Concentrations ranged from 2 to 112 oocysts per liter. The finding of Cryptosporidium oocysts in all samples examined from six western rivers is noteworthy in light of recent reports indicating that Cryptosporidium sp. is a significant agent of human and animal disease. This finding suggests that waterborne oocysts of this parasite are more important than was previously recognized. More detailed studies are needed to define geographical and temporal distribution, to assess the viability of waterborne oocysts, and to determine the importance of water as a means of transmission.  相似文献   

9.
A method using micro-fiber glass filters (8-micrometers porosity) at pH 3.5 was successfully used for simultaneous concentration of Salmonella and enterovirus from Meurthe River samples, collected 8 km south of Nancy, France. A concentration of 10-liter samples was indispensable and permitted recovery of several enterovirus and Salmonella serotypes in concentrations of 1.3 most probable number of cytopathogenic units per liter and 18 bacteria per liter, respectively.  相似文献   

10.
Cryptosporidium parvum has emerged as one of the most important new contaminants found in drinking water. Current protocols for the detection of cryptosporidia are time-consuming and rather inefficient. We recently described an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay permitting highly sensitive detection of C. parvum oocysts in drinking water samples. In this study, a second IMS-PCR assay to detect all cryptosporidial oocysts was developed, and both IMS-PCR assays were optimized on river water samples. A comparative study of the two IMS-PCR assays and the classical detection method based on an immunofluorescence assay (IFA) was carried out on 50 environmental samples. Whatever the type of water sample, the discrepancy in C. parvum detection between the IFA and IMS-PCR took the form of IFA-negative/IMS-PCR-positive results, and was caused mainly by the greater sensitivity of IMS-PCR as compared with IFA. Of the 50 water samples, only five tested positive for C. parvum using IMS-PCR, and could constitute a threat to human health. These results show that both IMS-PCR assays provide a rapid (1 d) and sensitive means of screening environmental water samples for the presence of cryptosporidia and C. parvum oocysts.  相似文献   

11.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

12.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

13.
Untreated cellulose filters adsorbed only small amounts of poliovirus 1, echovirus 5, coxsackievirus B5, or bacteriophage MS2 that were added to tap water or to solutions of imidazole-glycine buffer at pH 5 to 7. Modification of filters by in situ flocculation of ferric and aluminum hydroxides greatly increased the ability of the filters to adsorb viruses. Viruses adsorbed to the modified filters could be recovered by treating the filters with 3% beef extract (pH 9.5). Greater than 60% of the enteroviruses and greater than 55% of the MS2 added to tap water or buffer could be recovered in the beef extract eluate.  相似文献   

14.
When determining the recovery efficiency of a procedure for the detection of Cryptosporidium or the removal efficiency of a treatment process, it is necessary to accurately enumerate a 'seed dose'. Conventional techniques for this are highly variable and consequently, can result in misleading data. In this study, a flow cytometric method was developed for the production of suspensions of Cryptosporidium oocysts in which the number of organisms could be precisely determined. A Becton Dickinson FACScalibur flow cytometer was employed to produce oocyst suspensions containing 100 oocysts. Analysis of these suspensions resulted in a mean dose of 99.5 oocysts (S.D. = 1.1, %cv = 1.1). These results indicate that the use of such suspensions to seed test systems generates far more accurate data than is presently possible using conventional techniques. In addition, the use of immunomagnetic separation (IMS) for the isolation of oocysts from three different water matrices, after seeding with oocysts counted using flow cytometry, was investigated. The recovery efficiency of the IMS procedure was found to be high, with the percentage recovery of oocysts ranging from 82.3 to 86.3%, and the use of precise numbers of oocysts allowed accurate recovery efficiency data to be generated. A laser scanning instrument (ChemScan RDI) was employed for the rapid detection and enumeration of oocysts after capture using membrane filtration. This technique was found to be faster and easier to perform than conventional epifluorescence microscopy. These findings demonstrate that the ChemScan RDI system may be used as alternative procedure for the routine examination of IMS supernatant fluids for the presence of Cryptosporidium.  相似文献   

15.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

16.
A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera.  相似文献   

17.
Interest in rapid bacterial detection methods for sanitary indicator bacteria in water prompted a study of the use of [U-14C]mannitol to detect fecal coliforms (FC). A simple method which used m-FC broth, membrane filtration, and two-temperature incubation (35 degrees C for 2 h followed by 44.5 degrees C for 2.5 h) was developed. [U-14C]mannitol was added to the medium, and the temperature was raised to 44.5 degrees C after 2 h at 35 degrees C. 14CO2 was collected as Ba14CO3 and assayed by liquid scintillation spectroscopy. Correlations were examined between FC cell numbers at the start of incubation (standard 24-h FC test) and Ba14CO3 counts per minute after 4.5 h. Results indicated that FC numbers ranging from 1 x 10(1) to 2.1 x 10(5) cells could be detected in 4.5 h. Within-sample reproducibility at all cell concentrations was good, but sample-to-sample reproducibility was variable. Comparisons between m-FC broth and m-FC broth modified by substituting D-mannitol for lactose indicated that the standard m-FC broth was the better test medium. Results from experiments in which dimethyl sulfoxide was used to increase permeability of FC to [U-14C]mannitol indicated no increase in 14CO2 production due to dimethyl sulfoxide. Detection of FC by this method may be useful for rapid estimation of FC levels in freshwater recreational areas, for estimating the quality of potable source water, and potentially for emergency testing of potable water, suspected of contamination due to distribution line breaks or cross-connections.  相似文献   

18.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ·cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ·cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ·cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ·cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

19.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

20.
Cryptosporidium spp. are potential contaminants of food. Suspected cases of food-borne cryptosporidiosis are rarely confirmed because of the limited numbers of oocysts in the samples and the lack of sensitive detection methods adaptable to food. PCR was investigated as a means of overcoming this problem. A PCR assay was designed for the specific amplification of a previously sequenced portion of an oocyst protein gene fragment of Cryptosporidium parvum (N. C. Lally, G. D. Baird, S. J. McQuay, F. Wright, and J. J. Oliver, Mol. Biochem. Parasitol. 56:69-78, 1992) and compared with the primer set of Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg. 45:688-694, 1991). The PCR products were hybridized with digoxigenin-labeled internal probes and detected by chemiluminescence to enhance sensitivity. The two sets of primers were compared with regard to their sensitivity and specificity by using a variety of human and animal isolates of C. parvum and related parasites. Both assays enabled the detection of 1 to 10 oocysts in 20 ml of artificially contaminated raw milk. The assay based on the PCR set and probe of Laxer et al. detected DNAs from Eimeria acervulina and Giardia intestinalis. The new assay has good specificity for C. parvum bovine isolates and hence has a better potential for monitoring the prevalence of C. parvum in raw milk and other environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号