首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene modification of an auxin pulse in cotton stem sections   总被引:8,自引:7,他引:1       下载免费PDF全文
Beyer EM  Morgan PW 《Plant physiology》1969,44(12):1690-1694
The effect of ethylene on the basipetal movement of indole-3-acetic acid-1-14C through cotton stem sections (Gossypium hirsutum, L. var. Stoneville 213) was studied apart from processes involved in the uptake and exit of auxin by the section. Stem sections 60 mm in length were pretreated with ethylene or placed in room air (control) and pulse labeled for 20 min with IAA-1-14C. In both the ethylene treated and control sections, the IAA-1-14C taken up moved basipetally as a peak of radioactivity. Generally, the applied pulse moved down the stem sections at an average velocity of approximately 5.8 mm per hr. In some experiments, however, ethylene slightly reduced the velocity of auxin transport. Although the peak of radioactivity became broader and more dispersed during its migration through the section, it was still distinguishable after 7 hr of transport.  相似文献   

2.
Movement of IAA-C14 and 2,4-D-C14 through cylinders of known size and histology was compared using liquid scintillation counting. Both auxins showed strongly polar movement, even through pith parenchyma cut from Coleus internode #5, the youngest internode to have ceased elongation. The polar movement was correlated with sizable elongation of the excised cylinders. Velocities of basipetal movement for a given auxin, as determined by the intercept method, showed small or negligible differences between pith and “corner” cylinders. (Corner cylinders comprised mostly vascular tissue, plus some cortical, pith, and epidermal cells.) For IAA, basipetal velocities ranged from 2.1 to 3.3 mm per hr; for 2,4-D, they were 0.6–0.8. For both auxins there was much more net loss into corner than into pith cylinders, a difference associated with the fact that corner cylinders showed 10 times as many cells in transection. More 2,4-D moved basipetally through corner than through pith cylinders and the reverse was true of IAA. By chromatographic evidence, all the radioactivity in the basal receiving blocks was still associated with the auxin molecules.  相似文献   

3.
Einset JW  Lyon JL  Sipes DL 《Plant physiology》1981,67(6):1109-1112
An in vitro bioassay for chemicals that affect Citrus abscission was used to identify three inhibitors of stylar abscission in lemon pistil explants incubated on defined nutrient media. The three inhibitors (picloram, 4-chlorophenoxyacetic acid, and 3,5,6-trichloropyridine-2-oxyacetic acid) are all auxins, and the most potent of them (i.e. picloram) was found to be at least 10 times more active in the bioassay than 2,4-dichlorophenoxyacetic acid. Picloram (2 micromolar) also was shown to be effective in inhibiting stylar abscission in pistil explants from other Citrus cultivars such as mandarin, Valencia, and Washington navel oranges and grapefruit. To study the physiology of auxins active as abscission inhibitors versus inactive auxins in lemon pistils, the transport and metabolism of [1-14C]-2,4-dichlorophenoxyacetic acid was compared with that of [2-14C]indole-3-acetic acid, which is without effect in the bioassay over the range from 0.1-100 micromolar. Insignificant quantities of labeled indole-3-acetic acid and/or labeled derivatives were found to reach the presumptive zone of stylar abscission under the test conditions. Labeled 2,4-dichlorophenoxyacetic acid and/or labeled derivatives also were transported slowly through pistils, but some radioactivity could be detected in the stylar abscission zone as early as 24 hours after the start of incubation. Extensive conversion of [2-14C]indole-3-acetic acid to labeled compounds tentatively considered to be glycoside and cellulosic glucan derivatives was found with the use of solvent extraction methodology. A significantly smaller percentage of the radioactivity in pistils incubated on [1-14C]-2,4-dichlorophenoxyacetic acid was found in fractions corresponding to these derivatives. Both transport and metabolism appear to be important factors affecting the activity of auxins as abscission inhibitors in the bioassay.  相似文献   

4.
Veen H  Jacobs WP 《Plant physiology》1969,44(9):1277-1284
To see if polar movement was typical of growth-regulators other than auxins, the movement of adenine-8-14C and of kinetin-8-14C was studied in segments cut from petioles of increasing age. No polarity was found. In time-course experiments lasting 24 hr, kinetin showed a progressive increase of radioactivity in receiver blocks, while adenine showed a maximum at 8 hr with a decline thereafter. More kinetin moved through older segments than through younger ones. There was no difference in net loss as far as the position of the donor block is concerned. However, the loss of radioactivity from adenine donor blocks was much higher than the loss of radioactivity from kinetin donor blocks.  相似文献   

5.
The products of indole-3-acetic acid (IAA) metabolism by incubating hypocotyl sections and decapitated seedlings of Lupinus albus were investigated. Single treatments using [1-14C]-IAA, [2-14C]-IAA or [5-3H]-IAA and double treatments using [1-14C]-IAA+[5-3H]-IAA were carried out. Extracts from treated plant material were analyzed by paper chromatography (PC), Thin layer chromatography (TLC), and high performance liquid chromatography (HPLC). When hypocotyl sections were incubated in [2-14C]-IAA, several IAA decarboxylation products including indole-3-aldehyde (IA1), indole-3-methanol (IM), 3-hydroxymethyloxindole (HMOx), methyleneoxindole (MOx) and 3,3-bisindolylmethane (BIM) were detected in the 95% ethanol extract; a latter extraction with 1M NaOH rendered IAA, IM and BIM, suggesting that conjugated auxins were formed in addition to conjugated IM. In sections incubated with [1-14C]-IAA, the 1M NaOH extraction also produced IAA so confirming the formation of conjugated auxins. The same decarboxylation products and two conjugated auxins, indole-3-acetylaspartic acid (IAAsp) and 1-O-(indole-3-acetyl)--D-glucose (IAGlu), were detected in the acetonitrile extracts from decapitated seedlings treated with [5-3H]-IAA. After a double isotope treatment ([1-14C]-IAA+[5-3H]-IAA) of decapitated seedlings, the ratio 14C/3H measured in the HPLC fractions of the acetonitrile extracts confirmed the presence of decarboxylation products as well as conjugated auxins.  相似文献   

6.
Translocation of sugar and tritiated water in squash plants   总被引:4,自引:4,他引:0       下载免费PDF全文
Trip P  Gorham PR 《Plant physiology》1968,43(11):1845-1849
When 14C-sugar and THO were simultaneously introduced through a cut side vein or flap of a squash leaf (Cucurbita melopepo, Bailey cv. torticollis) concurrent translocation of 14C-sugars, T-photosynthates and THO with parallel, almost flat, gradients was observed in the petiole for periods of 1 to 3 hr. Parallel translocation gradients were not observed when 14C was introduced as 14CO2 and T by painting a leaf with THO. Autoradiography of frozen sections to locate the tissues in which THO was moving was unsuccessful. Steam-girdling blocked the movement of 14C and T when 14C-glucose and THO were introduced simultaneously by the flap-feeding technique. If THO moved as liquid water in the phloem along with the 14C-sugars, as blockage by steam girdling suggests, then solution flow of sugar cannot be excluded as a mechanism of translocation.  相似文献   

7.
Effects of ethylene on auxin transport   总被引:30,自引:23,他引:7  
The effect of ethylene on the uptake, distribution and polar transport of C14 from indole-3-acetic acid-2-C14 and naphthalene acetic acid-1-C14 in tissue sections was studied. Test species were cotton (Gossypium hirsutum, L.) and cowpea (Vigna sinensis, Endl.). Generally, incubation of tissue or intact plants with ethylene reduced the degree of polar auxin transport. Ethylene inhibited the movement of both auxins in stem tissue and IAA in petiole tissue of cotton. The effect of ethylene on auxin movement in cow-peas was more complex. Ethylene apparently inhibited transport in younger petiole and stem tissue, but stimulated the process to a small but significant degree in basal petiole segments.

Ethylene, in some experiments, reduced C14 (auxin) uptake. This reduction was consistently smaller than the inhibition of transport. Effects upon transport were observed when uptake was not different. Differences in uptake declined as the period of incubation with auxin was lengthened, but transport was inhibited for up to 23 hours.

It is proposed that ethylene may, through its effect on transport, cause localized shortages and surpluses of auxin which in turn contribute to symptoms now associated with the response of sensitive species to ethylene.

  相似文献   

8.
Horton RF  Fletcher RA 《Plant physiology》1968,43(12):2045-2048
The transport of the synthetic auxin, picloram (4-amino-3,5,6-trichloropicolinic acid) was investigated in sections of petioles of Phaseolus vulgaris L. and Coleus blumei Benth. and stems of Pisum sativum L. Transport of 14C-picloram was basipolar in all tissues, although the degree of polarity was dependant on age. The velocity of picloram movement was calculated at between 0.75 and 1.11 mm/hr. The amount moved in a given time, the flux, was dependant on the concentration applied and the length of the sections used. Picloram did not appear to be metabolized by the tissues during the transport experiments. When compared to the movement of other growth regulators, picloram transport bears marked similarities to that of 2,4-dichlorophenoxyacetic acid.  相似文献   

9.
The movement and polarity of zeatin, a highly active, endogenous cytokinin, through petioles and roots were tested in the classical experimental arrangement using excised 5-mm sections. Zeatin in the receiver cylinders of agar was measured by soybean callus bioassay and by liquid scintillation counting of 14C that had been added in the donor cylinders as [8-14C] zeatin. Both methods agreed in showing movement, but there was no polarity in Coleus #5 petioles. The amounts moved were about one-tenth of the GA-3 movement through petioles of the third pair of leaves of the same clone. Movement of 14C-zeatin through Pisum roots was similarly statistically significant but non-polar; the amounts moved were similar to those previously observed for polar GA-3 movement through Zea roots.  相似文献   

10.
Rainer Hertel  Rand Flory 《Planta》1968,82(2):123-144
Summary Movement of radioactive auxins was analysed in corn coleoptile sections. The results support the idea that processes involved in the transport of indoleacetic acid (IAA) are specific for growth-promoting auxins.Inhibition of IAA transport by triiodobenzoic acid is caused by a reversible block of the exit; the auxin held back remains in the transport pool. The observed increase in immobilization may be a secondary effect caused by the increased concentration of free IAA in the tissue.Auxin molecules are most likely transported by anon-covalent mechanism. IAA and naphthaleneacetic acid (NAA) move through the cell and exit as free molecules. A search for a transient auxin complex, chaseable as required for any transport carrier intermediate, yielded negative results. No18O was lost from NAA labeled with18O in the carboxyl group during transport of the auxin through coleoptile tissue.After application of IAA to auxin-depleted tissue, the transport rate undergoes oscillations with a period length of ca. 25 min.The movement of the auxin 2.4-dichlorophenoxyacetic acid which is usually sluggish, increased several times if some IAA was added. Auxin, thus, stimulates its own transport.A model is discussed in which auxin-binding to the plasma membrane and reversible changes of membrane conformation may provide a basis for active secretion and for the observed cooperativity. Leo Brauner zum 70. Geburtstag gewidmet.  相似文献   

11.
1. Evidence has accumulated that the action of auxins in promoting growth is exerted not upon the cell wall but upon the cell contents; i.e., the protoplasm. Following indications previously obtained, therefore, the effect of auxins on the rate of protoplasm streaming in the Avena coleoptile was studied. 2. Indole-3-acetic acid, the most active auxin available in pure form, was found to increase the rate of streaming in the epidermal cells of the Avena coleoptile at concentrations between 0.5 and 0.002 mg. per liter, the maximum increase being brought about at 0.01 mg. per liter. This concentration is approximately that which, applied in agar to one side of the decapitated coleoptile, would give a curvature of 1°; i.e., it is well within the range of concentrations active in growth promotion. It is, however, much less than that which produces maximum elongation in immersed sections of Avena coleoptiles. 3. This accelerating effect is readily determined quantitatively by comparison with the streaming in control coleoptiles in pure water, which, if thoroughly aerated, maintain a constant rate for over an hour. The accelerating effect takes place immediately and is over within about 30 minutes. 4. Concentrations of indole-3-acetic acid greater than 0.5 mg.per liter inhibit the streaming, the effect being also over in about 30 minutes, and its extent increasing with increasing auxin concentration. This parallels the effect of high auxin concentrations in inhibiting elongation, although the inhibition of streaming is obtained at much lower concentrations than inhibit elongation. 5. The effects of indole-3-acetic acid on streaming are not specific for that substance, but appear to be common to auxins in general. Thus coumaryl-3-acetic acid and allocinnamic acid, both of which bring about cell enlargement, root formation, and bud inhibition, i.e. are typical auxins, also cause an immediate acceleration of the rate of streaming, and as with indole-acetic add the effect is over in about 30 minutes. The concentrations of these two substances which produce the maximum effect are about ten times that of indole-acetic acid, which approximately corresponds with their relative auxin activities. The curves relating concentrations of these substances to their effects on streaming are very similar to that for indole-acetic acid. 6. On the other hand, certain substances which are known to affect streaming in other materials do not produce any effect comparable to that of auxin. Ethylene chlorhydrin, histidine, and urea in all concentrations were without effect on streaming in the Avena coleoptile within the first 30 minutes of treatment. 7. The effects produced by the auxins were not due to pH. 8. The action on streaming here studied is evidently quite different from the re-starting of streaming after its cessation, studied by Fitting in Vallisneria. Correspondingly histidine, which in Fitting''s experiments showed activity down to 10–7 M, is inactive here. 9. Per contra, the effect of auxin here studied is on normal streaming. It takes place immediately and at concentrations in the same range as those which produce growth. The curve of effect against concentration parallels that for growth although the actual concentration values differ. It is therefore reasonable to suppose that the effect of auxin on streaming is closely connected with one of the first stages of its effect on the growth process.  相似文献   

12.
A close positive correlation was observed between segment elongation and the specific activity of soluble acid invertase in stem segments of P. vulgaris incubated for 21 hr in the presence of IAA or of several synthetic auxins and auxin analogues. Optimum concentrations for the stimulation of growth and invertase activity were similar and varied from 10?6 M (2,4-D) through 10?5 M (IAA, IBA, α-NAA, β-NAA) to greater than 10?4 (IPA, PoAA, trans-cinnamic acid). The weak activity of trans-cinnamic acid, a competitive inhibitor of auxin action, may have resulted from cis-trans isomerization during incubation. The concentration of hexose sugars in the segments fell during incubation in the presence of auxin, the greatest decline in hexose concentration occurring in the presence of compounds exhibiting the greatest stimulation of growth.  相似文献   

13.
Tissue cultures were established from hypocotyl and cotyledonary leaf segments ofGuizotia abyssinica Cass. on MS medium supplemented with various concentrations of auxins (IAA, NAA, IBA or 2,4-D) and cytokinins (KN or BA). Expiants cultured on media with cytokinins or in combination with auxins produced shoot buds. Maximum number of shoot buds (20–25 per culture) were differentiated from cotyledonary leaf segments on medium with 2 mg 1-1 each of KN and IBA. Rooting of regenerated shoot buds was acheived on medium with NAA. The obtained plantlets were successfully transferred to soil.  相似文献   

14.
The polarity of movement of gibberellin through sections cut from near the root tips of Zea mays L. was studied, using methods like those we previously used in roots for auxin and in petioles for auxins, cytokinins, and gibberellic acid (GA-3). One μg GA-3 was added in a donor agar block and gibberellin activity in the receiver agar at the opposite end of the section was measured directly with a modified barley endosperm bioassay. The movement of gibberellin was away from the root tip (basipetal) and thus opposite in direction to the polarity of auxin through such root sections. The time-course of basipetal movement was dissimilar to that for gibberellin or auxin movement through petiole sections. It took 14-18 hr for gibberellin activity equivalent to 6 ng GA-3 to collect in the basal receivers on roots. Apical receivers showed activity equivalent to 1.6 ng GA-3 at 14-18 hr. Less than 0.01 ng equivalent GA-3 was collected from sections to which GA-3 was not added, so the 6 and 1.6 ng were almost entirely due to the added GA-3. These general conclusions were confirmed with an experiment using 14C-GA-3. A decline in activity in receivers was found in some experiments at 18 hr, paralleling earlier results with GA-3, IAA, and adenine in petioles and IAA in roots.  相似文献   

15.
The influence of plant growth regulators on biomass growth and the accumulation of medicinally-relevant isoflavone phytoestrogens, derivatives of genistein and daidzein (8 compounds including aglycones, glucosides and glucoside esters) in callus cultures of Genista tinctoria (Fabaceae) was examined. The experiments included 10 auxins [2,4-dichlorophenoxyacetic acid (2,4-D), p-chlorophenoxyacetic acid, indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, β-naphthoxyacetic acid, picloram, 2,3,5-triiodobenzoic acid (TIBA), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)] and 7 cytokinins [6-benzylaminopurine, forchlorfenuron, 1,3-diphenylurea, 2-isopentenyladenine, kinetin (KIN), thidiazuron, zeatin] applied at 0.5 and 5.0 mg l?1, jointly with 5.0 or 0.5 mg l?1 KIN or 2,4-D (for auxins and cytokinins, respectively—36 phytohormone combinations in total). Statistical analysis of the relationships between callus growth [expressed as growth index (Gi)] and the accumulation of isoflavones showed positive correlation in the cytokinin group (rxy values from 0.13 to 0.61) and negative correlation within auxins (rxy values from ?0.31 to ?0.39). Among the cytokinins tested, the highest isoflavone content (6,436.26 mg/100 g dry weight) and the fastest biomass growth (Gi = 892.46 %) were obtained for 0.5 mg l?1 KIN used jointly with 5.0 mg l?1 2,4-D. In the group of auxins, the combination of 0.5 mg l?1 TIBA and 5.0 mg l?1 KIN provided the fastest culture growth (Gi = 983.07 %) and the isoflavone concentration of 10,474.23 mg/100 g dry weight, which is so far the highest amount of these metabolites achieved in callus cultures of higher plants.  相似文献   

16.
Protocols have been developed for the in vitro regeneration of plants from calli derived from internode explants of chickpea (Cicer arietinum L) cv Pusa-372. Callusing was induced on both B5 and MS media supplemented with different combinations and concentrations of auxins and cytokinins, but shoot regeneration was achieved only in B5 medium supplemented with 4.0 mg l?1 IAA and 0.5 mg l?1 BAP after serial subculture of callus on media with increasing concentration of IAA and constant concentration of BAP. Rooting could not be achieved in in vitro regenerated shoots on any one of the media tried. Complete plantlets were, therefore, developed through grafting of the in vitro regenerated shoot on established root stock. The grafting methodology was found to be highly efficient and reproducible. The somaclones developed produced viable seeds which showed variability in terms of seed colour and seed weight. Thus, the protocols developed in this study remove one important bottleneck in the development of transgenic chickpea.  相似文献   

17.
Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla. Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l?1) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l?1. However, stem cuttings treated with a combination of auxins (2.0 mg l?1 IBA and 1.0 mg l?1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.  相似文献   

18.
Sweet orange (Citrus sinensis L Osbeck, var Nagpur) was explored for efficient multiple shoot regeneration and rooting in different media. The influence of phytohormones and carbon source on the in vitro morphogenesis of sweet orange epicotyl explants was investigated. Among the various concentrations and combinations of auxins (IAA and NAA) and cytokinins (BAP, Kn, Zn, and TDZ) tried, MT (Murashige and Tucker) medium fortified with benzylaminopurine (BAP) at 1 mg l?1 without auxin had a strong promotive effect on shoot regeneration, and elucidated best morphogenic response from one-month-old etiolated epicotyl explants. A 100% regeneration frequency was obtained, and multiple shoots with an average of 8.24 shoots per explant were produced on all of the explants. Root formation was seen in response to all the three auxins viz. IBA, NAA and IAA, but the best response with rapid induction was observed under the influence of indole butyric acid (IBA) at 1 mg l?1. Sucrose was observed to be at par with maltose as carbon source to support shoot regeneration. This study provided promising results, holds potential to be routinely employed for in vitro regeneration of important cultivars of Citrus spp, and can be incorporated for genetic transformation studies in citrus.  相似文献   

19.
Three isolates of heterocystous cyanobacteria, belonging to the genera Anabaena and Nostoc, gathered from Iranian terrestrial and aquatic ecosystems exhibited considerable growth promotion effect on several vegetables and herbaceous plants. To study the ability of these three isolates to produce auxins, three endogenous auxins, including indole-3-acetic acid (IAA), and two of its main homologues, indole-3-propionic acid and indole-3-butyric acid, were extracted and analyzed with high-performance liquid chromatography equipped with diode array detector and fluorescence detector, and the results were further confirmed with liquid chromatography–tandem mass spectrometry (LC–MS/MS) in the negative-ion mode. The dominant auxin observed in all isolates was indole-3-butyric acid (IBA) in the range of 140.10–2146.96 ng g?1 fresh weight (FW), and only small amounts of IAA (2.19–9.93 ng g?1 FW) were detected. The predominance of IBA in these strains is reported for the first time which is different from the previously reported auxin profiles in microalgae and algae with the predominance of IAA.  相似文献   

20.
The presence of synthetic auxins (2,4-D at a concentration as low as of 0.5 to 5.0 mg I-1, NAA at least at 5 mg I-1) in the cultivation medium was essential for the induction of callogenesis in anther cultures ofZea mays L. The application of IAA was ineffective. Kinetin induced bursting, darkening and a rapid anther necrosis, but at an appropriate concentration ratio with 2,4-D it stimulated pollen maturation at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号