首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyophilization is the most popular method for achieving improved stability of labile biopharmaceuticals, but a significant fraction of product activity can be lost during processing due to stresses that occur in both the freezing and the drying stages. The effect of the freezing rate on the recovery of herpes simplex virus 2 (HSV-2) infectivity in the presence of varying concentrations of cryoprotectant excipients is reported here. The freezing conditions investigated were shelf cooling (223 K), quenching into slush nitrogen (SN2), and plunging into melting propane cooled in liquid nitrogen (LN2). The corresponding freezing rates were measured, and the ice crystal sizes formed within the samples were determined using scanning electron microscopy (SEM). The viral activity assay demonstrated the highest viral titer recovery for nitrogen cooling in the presence of low (0.25% w/v sucrose) excipient concentration. The loss of viral titer in the sample cooled by melting propane was consistently the highest among those results from the alternative cooling methods. However, this loss could be minimized by lyophilization at lower temperature and higher vacuum conditions. We suggest that this is due to a higher ratio of ice recrystallization for the sample cooled by melting propane during warming to the temperature at which freeze-drying was carried out, as smaller ice crystals readily enlarge during warming. Under the same freezing condition, a higher viral titer recovery was obtained with a formulation containing a higher concentration of sugar excipients. The reason was thought to be twofold. First, sugars stabilize membranes and proteins by hydrogen bonding to the polar residues of the biomolecules, working as a water substitute. Second, the concentrated sugar solution lowers the nucleation temperature of the water inside the virus membrane and prevents large ice crystal formation within both the virus and the external medium.  相似文献   

2.
The percentage of cells that survive freezing and thawing is maximal at a specific cooling rate and lower at rates above or below this critical value. The existence of a survival optimum implies that at least two different factors can cause cell death. To seek a morphological basis of such injury we cooled Chinese hamster tissue-cultured cells at rates that were suboptimal, optimal, and supraoptimal with respect to survival, and then freeze-etched and replicated the cells. Replicas of the cells were examined for structural alterations caused by freezing. Cells cooled at rates at or exceeding the survival optimum showed structural inclusions caused by intracellular ice, while cells cooled at rates far exceeding the survival optimum often show no morphological evidence of freezing damage. Cells cooled at rates somewhat suboptimal with respect to survival appeared dehydrated and showed no direct evidence of intracellular ice, although many of these cells were able to form some ice if they were briefly warmed to high subzero temperatures and then recooled prior to freeze-etching. These results suggest that the presence of intracellular ice is not incompatible with survival and that one cannot necessarily equate good ultrastructural preservation with cell survival.  相似文献   

3.
Chemical fixation protocols provided unsatisfactory preserved material for ultrastructural studies on Jaagiella alpicola Vischer (Chlorophyta). Instead, several methods of rapid freeze fixation followed by freeze substitution were applied. For fast freeze fixation, two methods were tried: plunge immersion freezing in liquid propane using a home-made device, and projection against a copper block cooled by either liquid nitrogen or liquid helium. Each method furnished well fixed material. The quality of the fixed samples was quite similar whether propane or the cryoblock cooled with liquid nitrogen was used. Liquid helium, however, provided superior results. After fixation the samples were cryosubstituted, using acetone or methanol as organic solvent with a chemical fixative added. Acetone gave better results than methanol as a substitution solvent when high temperature embedding was performed. The best cryosubstitution for ultrastructural studies was that in which osmium tetroxide or a mixture of osmium tetroxide and urany acetate was used.  相似文献   

4.
Summary In order to improve the ultrastructural preservation of the female gametophyte ofPetunia x hybrida andBrassica napus we tested several cryofixation techniques and compared the results with those of conventional chemical fixation methods. Ovules fixed with glutaraldehyde and osmium tetroxide in the presence or absence of potassium ferrocyanide showed poor cell morphological and ultrastructural preservation. In ovules cryo-fixed by plunging into liquid propane, the cell morphology was well preserved. However, at the ultrastructural level structure-distorting ice crystals were detected in all tissues. Due to the large size of the ovules, cryofixation by plunging in liquid propane is not adequate for ultrastructural studies. In contrast,P. x hybrida andB. napus ovules cryo-fixed by high pressure freezing showed improved cell morphological as well as ultrastructural preservation of the embryo sac and the surrounding integumentary tissues. The contrast of the cellular membranes after freeze substitution with 2% osmium tetroxide and 0.1% uranyl acetate in dry acetone was high. At the ultrastructural level, the most prominent improvements were: straight plasma membranes which were appressed to the cell walls; turgid appearing organelles with smooth surface contours; minimal extraction of cytoplasmic and extracellular substances. In contrast to the chemically fixed ovules, in high pressure frozen ovules numerous microtubules and multivesicular bodies could be distinguished.  相似文献   

5.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at -196 degrees C and -20 degrees C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (-196 degrees C and -80 degrees C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at -20 degrees C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

6.
Studies on the optimal cooling rate for freezing human diploid fibroblasts   总被引:2,自引:0,他引:2  
Ampoules containing each 1 ml of Dulbecco's Modified Eagle Medium with 16.6% fetal calf serum and 10% dimethylsulfoxide were insulated in various ways and placed into different cooling boxes. The resulting cooling velocities of the medium ranged from about 0.7 to 102 °C/min. As revealed by cellular attachment in recovery cultures, human diploid fibroblasts cooled at about 1.5 to 4.5 °C/min to − 78 °C prior to storage in liquid nitrogen showed an optimal survival of about 60%. Survival was about 25% at cooling rates of 0.7 and 19 °C/min, respectively. The optimal cooling rate was achieved by insulating the freezing ampoules with 1 to 3 closed vessels and placing them into a dry ice chest, or into a dry ice/ethanol bath.  相似文献   

7.
 The effects of slow freezing and thawing on enzyme compartmentalization and ultrastructure were studied in rat liver slices frozen in dry ice, isopentane/ethanol-dry ice, or liquid nitrogen, and stored at –80°C for 1–14 days. Non-frozen slices served as controls. Frozen liver slices were thawed in a Karnovsky fixative and processed for transmission electron microscopy (TEM). After all freezing protocols, the outer zone of frozen-thawed tissue was ultrastructurally very similar to that of non-frozen liver. Towards the center of the tissue, the ultrastructure progressively deteriorated. Comparison with 50-μm cryostat sections prepared for TEM showed that thawing and not freezing is the detrimental step for fair preservation of ultrastructure. After thawing, homogenization, and differential centrifugation, distribution patterns of soluble marker enzymes were analyzed (cytosol, lactate dehydrogenase; mitochondrial matrix, glutamate dehydrogenase; lysosomes, acid phosphatase). The enzyme activities were not affected by storage for 2 weeks and the activity distributions showed that protein leakage from compartments was only minimally increased in frozen-thawed tissue compared with that from non-frozen tissue, irrespective of the method of freezing. In conclusion, fairly large tissue slices (20×5×3 mm) may be frozen and stored at –80°C for biochemical, ultrahistochemical or ultrastructural studies. For ultrastructural analysis, only the periphery of the tissue slice should be used. Accepted: 12 May 1997  相似文献   

8.
Living cells may be cooled to 77 K (liquid nitrogen) either to destroy them selectively or to store them for long periods. Water transport across the cell membranes during freezing and thawing is a primary factor determining whether the cells survive. These water movements are controlled by phase changes both intracellular and extracellular and by other factors such as the nature of any cryoprotective agent present, and the rates of cooling and thawing. The relation between cooling procedure, water transport and cell survival is discussed. In particular, the crucial r?le of dilution shock is emphasized: this is the damage to cells induced during the dilution that occurs both as ice melts during rewarming and when any cryoprotective additives are removed after thawing. Apart from the usefulness of understanding these processes for maximizing preservation or controlling selective destruction, the diverse responses of cells to different combinations of water transport and temperature changes appear likely to provide basic information on the properties of cell membranes.  相似文献   

9.
VISUALIZATION OF FREEZING DAMAGE   总被引:5,自引:0,他引:5       下载免费PDF全文
Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (~7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.  相似文献   

10.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

11.
Evidence in the literature shows that ice crystals that form in the nucleus of many rapidly cooled cells appear much larger than the ice crystals that form in the surrounding cytoplasm. We investigated the phenomenon in our laboratory using the techniques of freeze substitution and low temperature scanning electron microscopy on liver tissue frozen by liquid nitrogen plunge freezing. This method is estimated to cool the tissue at 1000°C/min. The results from these techniques show that the ice crystal sizes were statistically significantly larger in the nucleus than in the cytoplasm. It is our belief that this finding is important to cryobiology considering its potential role in the process of freezing and the mechanisms of damage during freezing of cells and tissues.  相似文献   

12.
Abstract— Murine brains were frozen in situ, either in liquid N2 or in Freon-12 cooled to its freezing point. The effect of these coolants on cooling rates and times in various CNS regions was determined. In addition, levels of ATP, P-creatine and lactate were measured in selected regions of brains from both intact animals and severed heads frozen in either coolant. For both the intact animals and severed heads, superficial regions of brain cooled to 0°C and deeper regions to 25°C, at the same rate in either liquid N2 or Freon. Subsequent cooling was more rapid in liquid N2 in both regions. Levels of ATP, P-creatine and lactate were similar in brains frozen in either coolant, probably because CNS utilization of highenergy phosphates decreased markedly as body temperature fell. In brains of animals frozen intact, levels of ATP and P-creatine were higher and levels of lactate were lower than those in brains from heads which were severed prior to freezing. This difference may be a result of the marked stimulation which accompanies decapitation and may also reflect continued cerebral circulation in the intact animal for a brief time after immersing the animal in the coolant.  相似文献   

13.
The rates of cooling of tissue packages quenched in liquid nitrogen were investigated using microthermocouples. By assembling tissue packages from a standard 200-μm tissue slice a microthermocouple could be positioned at different depths within the package. Results showed that for a given mass of tissue the rates of cooling at different depths were the same. When the tissue mass was varied the rates of cooling at a fixed depth decreased with increasing tissue mass.The ice crystal formations produced when tissues are quenched in liquid nitrogen were investigated using freeze substitution. Assemblies of rabbit cornea of different thicknesses were quenched in liquid nitrogen and freeze substituted. The size of the ice crystal cavities produced during the quenching increased with increasing tissue mass, exhibiting a saturation size for the larger tissue masses. There was no obvious size distribution of the ice crystal cavities across the thickness of the corneas.The results suggest an “isotherm” model for the quenching conditions used in these experiments, there being small or negligible temperature gradients through the tissue which uniformly cools at a fixed rate.  相似文献   

14.
The cellular damage that spermatozoa encounter at rapid rates of cooling has often been attributed to the formation of intracellular ice. However, no direct evidence of intracellular ice has been presented. An alternative mechanism has been proposed by Morris (2006) that cell damage is a result of an osmotic imbalance encountered during thawing. This paper examines whether intracellular ice forms during rapid cooling or if an alternative mechanism is present. Horse spermatozoa were cooled at a range of cooling rates from 0.3 to 3,000 degrees C/min in the presence of a cryoprotectant. The ultrastructure of the samples was examined by Cryo Scanning Electron Microscopy (CryoSEM) and freeze substitution, to determine whether intracellular ice formed and to examine alternative mechanisms of cell injury during rapid cooling. No intracellular ice formation was detected at any cooling rate. Differential scanning Calorimetry (DSC) was employed to examine the amount of ice formed at different rate of cooling. It is concluded that cell damage to horse spermatozoa, at cooling rates of up to 3,000 degrees C/min, is not caused by intracellular ice formation. Spermatozoa that have been cooled at high rates are subjected to an osmotic shock when they are thawed.  相似文献   

15.
Cryo-electron microscopy of vitreous sections (CEMOVIS) is currently considered the method of choice to explore cellular ultrastructure at high resolution as close as possible to their native state. Here, we apply a novel, easy-to-use and low-cost freeze fixation method for CEMOVIS, avoiding the use of high-pressure freezing apparatus. Cells are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In some parts of the tube, crystalline ice is formed, building up pressure sufficient for the liquid-glass transition of the remaining specimen. We verified the presence of vitreous ice in these preparations using CEMOVIS and electron diffraction. Furthermore, different tube materials being less poisonous than copper were established to minimize physiological alterations of the specimen. Bacteria, yeast and mammalian cells were tested for molecular resolution. The quality of results is equivalent to samples prepared by conventional high pressure freezing apparatus, thus establishing this novel method as fast, easy-to-use and low-cost freeze fixation alternative for cryo-EM.  相似文献   

16.
Second-stage juveniles of Meloidogyne incognita were prepared by several different techniques for scanning electron microscopy (SEM). Sequential fixation in the cold (4-8 C) was superior to rapid fixation at room temperature, glutaraldehyde and glutaraldehyde-formalin were better fixatives than formalin alone, and critical point drying with carbon dioxide or Freon gave similar results that were only slightly better than air drying with Freon. Freeze drying sequentially fixed nematodes from 100% ethanol in liquid propane produced the best preserved specimens with the fewest artifacts. Specimens of various free-living and plant-parasitic nematodes were prepared for SEM by freeze drying. This technique was adequate for most genera but unsatisfactory for a few. Although each genus may require a different procedure for optimum preservation of detail, sequential fixation with glutaraldehyde and freeze drying are comparable and often superior to commonly used techniques for preparing nematodes for SEM.  相似文献   

17.
Freeze-substitution and more conventional embedding protocols were evaluated for their accurate preservation of eubacterial ultrastructure. Radioisotopes were specifically incorporated into the RNA, DNA, peptidoglycan, and lipopolysaccharide of two isogenic derivatives of Escherichia coli K-12 as representative gram-negative eubacteria and into the RNA and peptidoglycan of Bacillus subtilis strains 168 and W23 as representative gram-positive eubacteria. Radiolabeled bacteria were processed for electron microscopy by conventional methods with glutaraldehyde fixation, osmium tetroxide postfixation, dehydration in either a graded acetone or ethanol series, and infiltration in either Spurr or Epon 812 resin. A second set of cells were simultaneously freeze-substituted by plunge-freezing in liquid propane, substituting in anhydrous acetone containing 2% (wt/vol) osmium tetroxide, and 2% (wt/vol) uranyl acetate, and infiltrating in Epon 812. Extraction of radiolabeled cell components was monitored by liquid scintillation counting at all stages of processing to indicate retention of cell labels. Electron microscopy was also used to visually confirm ultrastructural integrity. Radiolabeled nucleic acid and wall components were extracted by both methods. In conventionally embedded specimens, dehydration was particularly damaging, with ethanol-dehydrated cells losing significantly more radiolabeled material during dehydration and subsequent infiltration than acetone-treated cells. For freeze-substituted specimens, postsubstitution washes in acetone were the most deleterious step for gram-negative cells, while infiltration was more damaging for gram-positive cells. Autoradiographs of specimens collected during freeze-substitution were scanned with an optical densitometer to provide an indication of freezing damage; the majority of label lost from freeze-substituted cells was a result of poor freezing to approximately one-half of the cell population, thus accounting for the relatively high levels of radiolabel detected in the processing fluids. These experiments revealed that gram-positive and gram-negative cells respond differently to freezing; these differences are discussed with reference to wall structure. It was apparent that the cells frozen first (ie., the first to contact the cryogen) retained the highest percentage of all radioisotopes, and the highest level of cellular infrastructure, indicative of better preservation. The preservation of these select cells was far superior to that obtained by more conventional techniques.  相似文献   

18.
Methods and Principles of Fixation by Freeze-Substitution   总被引:4,自引:8,他引:4       下载免费PDF全文
Freeze-substitution is based on rapid freezing of tissues followed by solution ("substitution") of ice at temperatures well below O°C. A 1 to 3 mm. specimen was thrown into 3:1 propane-isopentane cooled by liquid nitrogen to -175°C. (with precautions). The frozen tissue was placed in substituting fluid at -70°C. for 1 week to dissolve ice slowly without distorting tissue structure. Excess substituting agent was washed out, and the specimen was embedded, sectioned, and stained conventionally. For best morphological and histochemical preservation, substituting fluids should in general contain both chemical fixing agent and solvent for ice, e.g., 1 per cent solutions of osmium tetroxide in acetone, mercuric chloride in ethanol, and picric acid in ethanol. Preservation of structure was poorer after substitution in solvent alone. Evidence was obtained that the chemical agent fixes tissue at low temperatures. The chemical mechanisms of fixation are probably similar to those operating at room temperature: new chemical cross-linkages, which contain the fixing agent, join tissue constituents together. This process is distinguished from denaturation by pure solvents. Freeze-substitution has many advantages, particularly the preservation of structure to the limit of resolution with the light microscope, and the accurate localization of many soluble and labile substances.  相似文献   

19.
The ultrastructure of neonatal rat heart cells in suspension and in tissue culture after freezing at optimal, suboptimal, and supraoptimal cooling rates with 2.5, 5, 7.5, and 10% DMSO was investigated. The effect of DMSO treatment only on the structure of the cells was also studied. A comparison was made with the survival in culture.Without freezing, increasing DMSO concentrations caused an increase of morphological damage, correlating with a decrease of the survival in culture. With 2.5% DMSO there was no difference with untreated cells. At higher DMSO concentrations, the ultrastructural damage increased from spaces between cell membrane and cytoplasm at 5% DMSO to interrupted cell membranes, swollen or destroyed mitochondria, and nuclei with clumped chromatin at 10% DMSO.After freezing at optimal or nonoptimal cooling rates with 5 or 7.5% DMSO, the ultrastructure correlated well with the survival. After freezing with 2.5 or 10% DMSO at optimal or nonoptimal cooling rates, differences in survival were found, which were not reflected in the ultrastructure of the cell. After 8 days of culturing, cells which were frozen at all the different cooling rates and DMSO concentrations appeared to have a normal structure.  相似文献   

20.
The present study aimed at the long-term storage of rumen protozoa as living cells in liquid nitrogen. The two-step or interrupted slow freezing procedure was used to cryopreserve six of the dominant species of rumen ciliates isolated from monofaunated animals, Dasytricha ruminantium, Entodinium caudatum, Epidinium ecaudatum caudatum, Eudiplodinium maggii, Isotricha prostoma, and Polyplastron multivesiculatum. We optimized the first step in the interrupted slow freezing procedure, from the extracellular ice nucleation temperature to the holding temperature, and studied the effects of the cooling rates on survival. In addition to the nature of the cryoprotectant (dimethyl sulfoxide), the equilibration temperature and equilibration time (25 degrees C and 5 min, respectively), and the holding time at subzero temperature (45 min) recommended previously (S. Kisidayová, J. Microbiol. Methods 22:185-192, 1995), we found that a holding temperature of -30 degrees C, a cooling rate from extracellular ice nucleation temperature to holding temperature of between 1.2 degrees C/min and 2.5 degrees C/min, depending on the ciliate, and rumen juice as the freezing and thawing medium markedly improved the survival rate. Survival rates determined after 2 weeks in liquid nitrogen were 100% for Isotricha, 98% for Dasytricha, 85% for Epidinium, 79% for Polyplastron, 63% for Eudiplodinium, and 60% for Entodinium. They were not significantly modified after a period of 1 year in liquid nitrogen. Four of the five ciliate species cryopreserved for 8 months in liquid nitrogen successfully colonized the rumen when inoculated into defaunated animals. These results have made it possible to set up a bank of cryopreserved rumen protozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号