首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the differences in synonymous codon use between E. coli and S. typhimurium, the synonymous substitution rates can be estimated. In contrast to previous studies on the substitution rates in these two organisms, we use a kinetic model that explicitly takes the selection bias into account. The selection pressure on synonymous codons for a particular amino acid can be calculated from the observed codon bias. This offers a unique opportunity to study systematically the relationship between substitution-rate constants and selection pressure. The results indicate that the codon bias in these organisms is determined by a mutation-selection balance rather than by stabilizing selection. A best fit to the data implies that the mutation rate constant increases about threefold in genes at low expression levels relative to those that are highly expressed.Correspondence to: O.G. Berg  相似文献   

2.
Dunn KA  Bielawski JP  Yang Z 《Genetics》2001,157(1):295-305
The relationships between synonymous and nonsynonymous substitution rates and between synonymous rate and codon usage bias are important to our understanding of the roles of mutation and selection in the evolution of Drosophila genes. Previous studies used approximate estimation methods that ignore codon bias. In this study we reexamine those relationships using maximum-likelihood methods to estimate substitution rates, which accommodate the transition/transversion rate bias and codon usage bias. We compiled a sample of homologous DNA sequences at 83 nuclear loci from Drosophila melanogaster and at least one other species of Drosophila. Our analysis was consistent with previous studies in finding that synonymous rates were positively correlated with nonsynonymous rates. Our analysis differed from previous studies, however, in that synonymous rates were unrelated to codon bias. We therefore conducted a simulation study to investigate the differences between approaches. The results suggested that failure to properly account for multiple substitutions at the same site and for biased codon usage by approximate methods can lead to an artifactual correlation between synonymous rate and codon bias. Implications of the results for translational selection are discussed.  相似文献   

3.
J. B. Walsh 《Genetics》1992,130(4):939-946
A key step in the substitution of a new organelle mutant throughout a population is the generation of germ-line cells homoplasmic for that mutant. Given that each cell typically contains multiple copies of organelles, each of which in turn contains multiple copies of the organelle genome, processes akin to drift and selection in a population are responsible for producing homoplasmic cells. This paper examines the expected substitution rate of new mutants by obtaining the probability that a new mutant is fixed throughout a cell, allowing for arbitrary rates of genome turnover within an organelle and organelle turnover within the cell, as well as (possibly biased) gene conversion and genetic differences in genome and/or organelle replication rates. Analysis is based on a variation of Moran's model for drift in a haploid population. One interesting result is that if the rate of unbiased conversion is sufficiently strong, it creates enough intracellular drift to overcome even strong differences in the replication rates of wild-type and mutant genomes. Thus, organelles with very high conversion rates are more resistant to intracellular selection based on differences in genome replication and/or degradation rates. It is found that the amount of genetic exchange between organelles within the cell greatly influences the probability of fixation. In the absence of exchange, biased gene conversion and/or differences in genome replication rates do not influence the probability of fixation beyond the initial fixation within a single organelle. With exchange, both these processes influence the probability of fixation throughout the entire cell. Generally speaking, exchange between organelles accentuates the effects of directional intracellular forces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Selection on Silent Sites in the Rodent H3 Histone Gene Family   总被引:6,自引:0,他引:6       下载免费PDF全文
R. W. DeBry  W. F. Marzluff 《Genetics》1994,138(1):191-202
Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.  相似文献   

5.
It is has been suggested that synonymous codon bias is a consequence of mutation bias in mammals. We tested this hypothesis in humans using single-nucleotide polymorphism data. We found a pattern of polymorphism which was inconsistent with the mutation bias hypothesis in G+C-rich genes. However, the data were consistent with the action of natural selection or biased gene conversion. Similar patterns of polymorphism were also observed in noncoding DNA, suggesting that natural selection or biased gene conversion may affect large tracts of the human genome.  相似文献   

6.
An evolutionary perspective on synonymous codon usage in unicellular organisms   总被引:64,自引:0,他引:64  
Summary Observed patterns of synonymous codon usage are explained in terms of the joint effects of mutation, selection, and random drift. Examination of the codon usage in 165Escherichia coli genes reveals a consistent trend of increasing bias with increasing gene expression level. Selection on codon usage appears to be unidirectional, so that the pattern seen in lowly expressed genes is best explained in terms of an absence of strong selection. A measure of directional synonymous-codon usage bias, the Codon Adaptation Index, has been developed. In enterobacteria, rates of synonymous substitution are seen to vary greatly among genes, and genes with a high codon bias evolve more slowly. A theoretical study shows that the patterns of extreme codon bias observed for someE. coli (and yeast) genes can be generated by rather small selective differences. The relative plausibilities of various theoretical models for explaining nonrandom codon usage are discussed.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

7.
We developed population genetic theory for organelle genes, using an infinite alleles model appropriate for molecular genetic data, and considering the effects of mutation and random drift on the frequencies of selectively neutral alleles. The effects of maternal inheritance and vegetative segregation of organelle genes are dealt with by defining new effective gene numbers, and substituting these for 2N(e) in classical theory of nuclear genes for diploid organisms. We define three different effective gene numbers. The most general is N(lambda), defined as a function of population size, number of organelle genomes per cell, and proportions of genes contributed by male and female gametes to the zygote. In many organisms, vegetative segregation of organelle genomes and intracellular random drift of organelle gene frequencies combine to produce a predominance of homoplasmic cells within individuals in the population. Then, the effective number of organelle genes is N(eo), a simple function of the numbers of males and females and of the maternal and paternal contributions to the zygote. Finally, when the paternal contribution is very small, N( eo) is closely approximated by the number of females, N( f). Then if the sex ratio is 1, the mean time to fixation or loss of new mutations is approximately two times longer for nuclear genes than for organelle genes, and gene diversity is approximately four times greater. The difference between nuclear and organelle genes disappears or is reversed in animals in which males have large harems. The differences between nuclear and organelle gene behavior caused by maternal inheritance and vegetative segregation are generally small and may be overshadowed by differences in mutation rates to neutral alleles. For monoecious organisms, the effective number of organelle genes is approximately equal to the total population size N. We also show that a population can be effectively subdivided for organelle genes at migration rates which result in panmixis for nuclear genes, especially if males migrate more than females.  相似文献   

8.
RNA viruses successfully adapt to various environments by repeatedly producing new mutants, often through generating a number of nucleotide substitutions. To estimate the degree of variation in mutation rates of RNA viruses and to understand the source of such variation, we studied the synonymous substitution rate because synonymous substitution is exempt from functional constraints at the protein level, and its rate reflects the mutation rate to a great extent. We estimated the synonymous substitution rates for a total of 49 different species of RNA viruses, and we found that the rates had tremendous variation by 5 orders of magnitude (from 1.3 x 10(-7) to 6.2 x 10(-2) /synonymous site/year). Comparing the synonymous substitution rates with the replication frequencies and replication error rates for the RNA viruses, we found that the main source of the rate variation was differences in the replication frequency because the rates of replication error were roughly constant over different RNA viruses. Moreover, we examined a relationship between viral life strategies and synonymous substitution rates to understand which viral life strategies affect replication frequencies. The results show that the variation of synonymous substitution rates has been influenced most by either the difference in the infection modes or the differences in the transmission modes. In conclusion, the variation of mutation rates for RNA viruses is caused by different replication frequencies, which are affected strongly by the infection and transmission modes.  相似文献   

9.
It has often been suggested that differential usage of codons recognized by rare tRNA species, i.e. "rare codons", represents an evolutionary strategy to modulate gene expression. In particular, regulatory genes are reported to have an extraordinarily high frequency of rare codons. From E. coli we have compiled codon usage data for highly expressed genes, moderately/lowly expressed genes, and regulatory genes. We have identified a clear and general trend in codon usage bias, from the very high bias seen in very highly expressed genes and attributed to selection, to a rather low bias in other genes which seems to be more influenced by mutation than by selection. There is no clear tendency for an increased frequency of rare codons in the regulatory genes, compared to a large group of other moderately/lowly expressed genes with low codon bias. From this, as well as a consideration of evolutionary rates of regulatory genes, and of experimental data on translation rates, we conclude that the pattern of synonymous codon usage in regulatory genes reflects primarily the relaxation of natural selection.  相似文献   

10.
Patterns of non-uniform usage of synonymous codons vary across genes in an organism and between species across all domains of life. This codon usage bias (CUB) is due to a combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of mutation bias and selection on CUB assuming uniform mutational and other non-adaptive forces across the genome. However, non-adaptive nucleotide biases can vary within a genome due to processes such as biased gene conversion (BGC), potentially obfuscating signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive nucleotide biases are lacking for non-model organisms. We combine an unsupervised learning method with a population genetics model of synonymous coding sequence evolution to assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantification of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts. We find that in the absence of a priori information, unsupervised learning can be used to identify genes evolving under different non-adaptive nucleotide biases. We find that the impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among closely-related species. We show that the overall strength and direction of translational selection can be underestimated by failing to account for intragenomic variation in non-adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine learning are also physically clustered across chromosomes. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable non-adaptive nucleotide biases on codon frequencies.  相似文献   

11.
Hambuch TM  Parsch J 《Genetics》2005,170(4):1691-1700
The nonrandom use of synonymous codons (codon bias) is a well-established phenomenon in Drosophila. Recent reports suggest that levels of codon bias differ among genes that are differentially expressed between the sexes, with male-expressed genes showing less codon bias than female-expressed genes. To examine the relationship between sex-biased gene expression and level of codon bias on a genomic scale, we surveyed synonymous codon usage in 7276 D. melanogaster genes that were classified as male-, female-, or non-sex-biased in their expression in microarray experiments. We found that male-biased genes have significantly less codon bias than both female- and non-sex-biased genes. This pattern holds for both germline and somatically expressed genes. Furthermore, we find a significantly negative correlation between level of codon bias and degree of sex-biased expression for male-biased genes. In contrast, female-biased genes do not differ from non-sex-biased genes in their level of codon bias and show a significantly positive correlation between codon bias and degree of sex-biased expression. These observations cannot be explained by differences in chromosomal distribution, mutational processes, recombinational environment, gene length, or absolute expression level among genes of the different expression classes. We propose that the observed codon bias differences result from differences in selection at synonymous and/or linked nonsynonymous sites between genes with male- and female-biased expression.  相似文献   

12.
According to population genetics models, genomic regions with lower crossing-over rates are expected to experience less effective selection because of Hill-Robertson interference (HRi). The effect of genetic linkage is thought to be particularly important for a selection of weak intensity such as selection affecting codon usage. Consistent with this model, codon bias correlates positively with recombination rate in Drosophila melanogaster and Caenorhabditis elegans. However, in these species, the G+C content of both noncoding DNA and synonymous sites correlates positively with recombination, which suggests that mutation patterns and recombination are associated. To remove this effect of mutation patterns on codon bias, we used the synonymous sites of lowly expressed genes that are expected to be effectively neutral sites. We measured the differences between codon biases of highly expressed genes and their lowly expressed neighbors. In D. melanogaster we find that HRi weakly reduces selection on codon usage of genes located in regions of very low recombination; but these genes only comprise 4% of the total. In C. elegans we do not find any evidence for the effect of recombination on selection for codon bias. Computer simulations indicate that HRi poorly enhances codon bias if the local recombination rate is greater than the mutation rate. This prediction of the model is consistent with our data and with the current estimate of the mutation rate in D. melanogaster. The case of C. elegans, which is highly self-fertilizing, is discussed. Our results suggest that HRi is a minor determinant of variations in codon bias across the genome.  相似文献   

13.
The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.  相似文献   

14.
Previous comparison of a relatively small set of homologous genes from Escherichia coli and Salmonella typhimurium revealed that genes nearer to the origin of replication had substitution rates lower than genes closer to the replication terminus. The recently completed sequences of numerous bacterial genomes have allowed us to test whether this effect of distance from the replication origin on substitution rates, as observed for the E. coli-S. typhimurium comparison, is a general feature of bacterial genomes. Extending the analysis to all 3,000 E. coli-S. typhimurium homologs confirmed the significant association between chromosomal position and synonymous site divergence. However, the effect, though still significant, is not as dramatic as originally thought. A similar association between relative chromosomal location and synonymous substitution rate was detected in the majority of other bacterial species comparisons within alpha- and gamma- Proteobacteria, and Firmicutes but was absent in Chlamydiales. The opposite trend, i.e., a decrease in synonymous divergence with distance from the replication origin, was detected in Mycobacteria. Analysis of the patterns of nucleotide substitutions revealed that the distance effect is not affected by gene orientation and is mainly caused by an increase in rates of transversions, suggesting that this effect may not be caused by recombinational repair or biased gene conversion, as originally suggested.  相似文献   

15.
Theory predicts that selection should be less effective in the nonrecombining genes of Y-chromosomes, relative to the situation for genes on the other chromosomes, and this should lead to the accumulation of deleterious nonsynonymous substitutions. In addition, synonymous substitution rates may differ between X- and Y-linked genes because of the male-driven evolution effect and also because of actual differences in per-replication mutation rates between the sex chromosomes. Here, we report the first study of synonymous and nonsynonymous substitution rates on plant sex chromosomes. We sequenced two pairs of sex-linked genes, SlX1-SlY1 and SlX4-SlY4, from dioecious Silene latifolia and S. dioica, and their non-sex-linked homologues from nondioecious S. vulgaris and Lychnis flos-jovis, respectively. The rate of nonsynonymous substitutions in the SlY4 gene is significantly higher than that in the SlX4 gene. Silent substitution rates are also significantly higher in both Y-linked genes, compared with their X-linked homologues. The higher nonsynonymous substitution rate in the SlY4 gene is therefore likely to be caused by a mutation rate difference between the sex chromosomes. The difference in silent substitution rates between the SlX4 and SlY4 genes is too great to be explained solely by a higher per-generation mutation rate in males than females. It is thus probably caused by a difference in per-replication mutation rates between the sex chromosomes. This suggests that the local mutation rate can change in a relatively short evolutionary time.  相似文献   

16.
J M Comeron  M Kreitman  M Aguadé 《Genetics》1999,151(1):239-249
Evolutionary analysis of codon bias in Drosophila indicates that synonymous mutations are not neutral, but rather are subject to weak selection at the translation level. Here we show that the effectiveness of natural selection on synonymous sites is strongly correlated with the rate of recombination, in accord with the nearly neutral hypothesis. This correlation, however, is apparent only in genes encoding short proteins. Long coding regions have both a lower codon bias and higher synonymous substitution rates, suggesting that they are affected less efficiently by selection. Therefore, both the length of the coding region and the recombination rate modulate codon bias. In addition, the data indicate that selection coefficients for synonymous mutations must vary by a minimum of one or two orders of magnitude. Two hypotheses are proposed to explain the relationship among the coding region length, the codon bias, and the synonymous divergence and polymorphism levels across the range of recombination rates in Drosophila. The first hypothesis is that selection coefficients on synonymous mutations are inversely related to the total length of the coding region. The second hypothesis proposes that interference among synonymous mutations reduces the efficacy of selection on these mutations. We investigated this second hypothesis by carrying out forward simulations of weakly selected mutations in model populations. These simulations show that even with realistic recombination rates, this interference, which we call the "small-scale" Hill-Robertson effect, can have a moderately strong influence on codon bias.  相似文献   

17.
Synonymous and nonsynonymous rate variation in nuclear genes of mammals   总被引:34,自引:6,他引:28  
A maximum likelihood approach was used to estimate the synonymous and nonsynonymous substitution rates in 48 nuclear genes from primates, artiodactyls, and rodents. A codon-substitution model was assumed, which accounts for the genetic code structure, transition/transversion bias, and base frequency biases at codon positions. Likelihood ratio tests were applied to test the constancy of nonsynonymous to synonymous rate ratios among branches (evolutionary lineages). It is found that at 22 of the 48 nuclear loci examined, the nonsynonymous/synonymous rate ratio varies significantly across branches of the tree. The result provides strong evidence against a strictly neutral model of molecular evolution. Our likelihood estimates of synonymous and nonsynonymous rates differ considerably from previous results obtained from approximate pairwise sequence comparisons. The differences between the methods are explored by detailed analyses of data from several genes. Transition/transversion rate bias and codon frequency biases are found to have significant effects on the estimation of synonymous and nonsynonymous rates, and approximate methods do not adequately account for those factors. The likelihood approach is preferable, even for pairwise sequence comparison, because more-realistic models about the mutation and substitution processes can be incorporated in the analysis. Received: 17 May 1997 / Accepted: 28 September 1997  相似文献   

18.
Codon bias is the non-random use of synonymous codons, a phenomenon that has been observed in species as diverse as bacteria, plants and mammals. The preferential use of particular synonymous codons may reflect neutral mechanisms (e.g. mutational bias, G|C-biased gene conversion, genetic drift) and/or selection for mRNA stability, translational efficiency and accuracy. The extent to which these different factors influence codon usage is unknown, so we dissected the contribution of mutational bias and selection towards codon bias in genes from 15 eudicots, 4 monocots and 2 mosses. We analysed the frequency of mononucleotides, dinucleotides and trinucleotides and investigated whether the compositional genomic background could account for the observed codon usage profiles. Neutral forces such as mutational pressure and G|C-biased gene conversion appeared to underlie most of the observed codon bias, although there was also evidence for the selection of optimal translational efficiency and mRNA folding. Our data confirmed the compositional differences between monocots and dicots, with the former featuring in general a lower background compositional bias but a higher overall codon bias.  相似文献   

19.
A comparative analysis of the transfer RNA genes in the genomes of the major kingdoms of eukaryotes and prokaryotes leads to the general conclusion that the rate of evolution of organelle tRNA genes is typically equal to of greater than that of their nuclear counterparts. Situations where this is not the case, most notably in vascular plants, are attributable to an elevated mutation rate in the nuclear genome. Through a comparison of rates of mutation with rates of nucleotide substitution, it is shown that there is a reduction in the efficiency of selection on new mutations in organelle genes. Numerous lines of evidence, including observed reductions in stem duplex stability and changes in loop sizes, suggest that the excess changes observed in the organelle genes are mildly deleterious. Uniparental inheritance of organelles causes a reduction in the efficiency of selection through the joint effects of an increase in linkage disequilibrium and a decrease in effective population size. These results provide molecular support for the idea that asexually propagating genomes are subject to long-term, gradual fitness loss and raise questions about the role of organelle mutations in the long-term survival of major phylogenetic lineages.   相似文献   

20.
The genetic code is degenerate—most amino acids can be encoded by from two to as many as six different codons. The synonymous codons are not used with equal frequency: not only are some codons favored over others, but also their usage can vary significantly from species to species and between different genes in the same organism. Known causes of codon bias include differences in mutation rates as well as selection pressure related to the expression level of a gene, but the standard analysis methods can account for only a fraction of the observed codon usage variation. We here introduce an explicit model of codon usage bias, inspired by statistical physics. Combining this model with a maximum likelihood approach, we are able to clearly identify different sources of bias in various genomes. We have applied the algorithm to Saccharomyces cerevisiae as well as 325 prokaryote genomes, and in most cases our model explains essentially all observed variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号