首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact rat liver cells from the perivenous region were isolated by collagenase perfusion after first destroying the periportal region by a brief portal infusion of digitonin. Periportal cells were isolated after retrograde digitonin infusion. Significantly higher alanine aminotransferase, gamma-glutamyltransferase and lactate dehydrogenase activities and lower glutamate dehydrogenase and pyruvate kinase activities in periportal than in perivenous cells demonstrate marked separation. The high yield allows further characterization in vitro of the cell populations.  相似文献   

2.
The biochemical and functional heterogeneity of hepatocytes in different zones of the liver acinus may be related to the concentrations of hormones within the liver acinus. We examined the effects of hypophysectomy, which causes marked changes in plasma hormone levels and in activities of hepatic enzymes that are normally heterogeneously distributed, on the degree of metabolic zonation within the liver acinus. In hypophysectomized rats the activity of alanine aminotransferase was increased, but its normal zonation (predominance in the periportal zone) was preserved. The activity in cultured periportal and perivenous hepatocytes was increased by dexamethasone, but not by glucagon. Periportal hepatocytes from hypophysectomized rats expressed higher rates of gluconeogenesis in culture than did perivenous hepatocytes, irrespective of the absence or presence of dexamethasone, glucagon or insulin. Similar differences in rates of ketogenesis and in the mitochondrial redox state in response to glucagon were observed between periportal and perivenous hepatocytes from hypophysectomized rats as between cell populations from normal rats. Although hypophysectomy causes marked changes in hepatic enzyme activities, it does not alter the degree of zonation of alanine aminotransferase, gluconeogenesis or the mitochondrial redox state within the liver acinus.  相似文献   

3.
A technique is described which allows preparations of hepatocytes, enriched in either periportal or perivenous hepatocytes ('PP-cells' and 'PV-cells' respectively), in a yield of about 30-50% compared with control cell preparations. The liver is first perfused for 40-60s with digitonin (4 mg/ml) to destroy selectively either the periportal or the perivenous part of the microcirculatory unit, and then the remaining hepatocytes are isolated by the ordinary collagenase perfusion technique. In periportal cells the activities of alanine aminotransferase and pyruvate kinase were 29.4 and 18.7 mumol/min per mg of DNA respectively. The rate of gluconeogenesis was 0.402 mumol/min per mg of DNA. In perivenous cells the corresponding values were 9.55, 22.1 and 0.244 mumol/min per mg of DNA respectively. These data support the concept of a zonation of glucose metabolism within the microcirculatory unit of the liver, with the afferent part (periportal zone) having a 2-fold, more active gluconeogenesis than the efferent part (perivenous zone).  相似文献   

4.
Using lyophilized cryostat sections of liver the activities of alanine aminotransferase, lactate dehydrogenase, and pyruvate kinase were measured using a Lowry technique in the first layer of hepatocytes adjacent to terminal hepatic venules and in the residual parenchymal of the perivenous zone of the acinus in normally fed adult male Wistar rats. Alanine aminotransferase was homogeneously distributed in the two areas measured (ratio hepatocytes adjacent to terminal hepatic venules/residual parenchyma of the perivenous zone: 1.05). Enzyme activities of the lactate dehydrogenase were significantly lower in the hepatocytes adjacent to terminal hepatic venules (ratio: 0.65) and those of the pyruvate kinase significantly higher (ratio: 1.12) than in the residual parenchyma of the perivenous zone indicating liver cell heterogeneity in this zone of the liver acinus.  相似文献   

5.
Zonation of the actions of ethanol on gluconeogenesis and ketogenesis from lactate were investigated in the bivascularly perfused rat liver. Livers from fasted rats were perfused bivascularly in the antegrade and retrograde modes. Ethanol and lactate were infused into the hepatic artery (antegrade and retrograde) and portal vein. A previously described quantitative analysis that takes into account the microcirculatory characteristics of the rat liver was extended to the analysis of zone-specific effects of inhibitors. Confirming previous reports, gluconeogenesis and the corresponding oxygen uptake increment due to saturable lactate infusions were more pronounced in the periportal region. Arterially infused ethanol inhibited gluconeogenesis more strongly in the periportal region (inhibition constant = 3.99 ± 0.22 mM) when compared to downstream localized regions (inhibition constant = 8.64 ± 2.73 mM). The decrease in oxygen uptake caused by ethanol was also more pronounced in the periportal zone. Lactate decreased ketogenesis dependent on endogenous substrates in both regions, periportal and perivenous, but more strongly in the former. Ethanol further inhibited ketogenesis, but only in the periportal zone. Stimulation was found for the perivenous zone. The predominance of most ethanol effects in the periportal region of the liver is probably related to the fact that its transformation is also clearly predominant in this region, as demonstrated in a previous study. The differential effect on ketogenesis, on the other hand, suggest that the net effects of ethanol are the consequence of a summation of several partial effects with different intensities along the hepatic acini.  相似文献   

6.
Predominance of the vasopressin binding capacity in the hepatic perivenous area leads to the hypothesis that the metabolic effects of the hormone should also be more pronounced in this area. Until now this question has been approached solely by experiments with isolated hepatocytes where an apparent absence of metabolic zonation was found. We have reexamined this question using the bivascularly perfused liver. In this system periportal cells can be reached in a selective manner with substrates and effectors via the hepatic artery when retrograde perfusion (hepatic vein --> portal vein) is done. The action of vasopressin (1-10 nM) on glycogenolysis, initial calcium efflux, glycolysis and oxygen uptake were measured. The results revealed that the action of vasopressin in the liver is heterogeneously distributed. Glycogenolysis stimulation and initial calcium efflux were predominant in the perivenous area, irrespective of the vasopressin concentration. Oxygen uptake was stimulated in the perivenous area; in the periportal area it ranged from inhibition at low vasopressin concentrations to stimulation at high ones. Lactate production was generally greater in the perivenous zone, whereas the opposite occurred with pyruvate production. Analysis of these and other results suggests that at least three factors are contributing to the heterogenic response of the liver parenchyma to vasopressin: a) receptor density, which tends to favour the perivenous zone; b) cell-to-cell interactions, which tend to favour situations where the perivenous zone is amply supplied with vasopressin; and c) the different response capacities of perivenous and periportal cells.  相似文献   

7.
Livers of starved rats refed for 2 h were perfused in situ by a modification of the dual digitonin pulse technique of Quistorff and Grunnet (Quistorff, B., and Grunnet, N. (1987) Biochem. J. 243, 87-95). A pulse of digitonin (2 mg/ml) was infused first antegrade through the portal vein followed retrograde through the vena cava, or in reverse order, 13 mg of digitonin per zone. Microscopic examination showed that this procedure permeabilized the periportal and perivenous zones of the liver without overlap, with a narrow unaffected band of hepatocytes between the zones. The distribution pattern between periportal and perivenous zones ratio for alanine transaminase, lactate hydrogenase, fructose-1,6-bisphosphatase, and phosphoenolpyruvate carboxykinase ranged from 1.5 to 3. Glucokinase activity was higher in the perivenous zone (periportal/perivenous ratio of 0.7) and glutamine synthetase was exclusively present in that zone. Fructose 2,6-bisphosphate concentration was nearly equal in the two zones.  相似文献   

8.
The transaminase inhibitor l-2-amino-4-methoxy-trans-3-butenoic acid (AMB) decreased aspartate aminotransferase activity by approximately two-thirds in isolated rat liver mitohondria incubated with succinate, ammonia, and ornithine. Aspartate production by the mitochondria was unaffected over the 30-min incubation period, indicating that mitochondrial aspartate aminotransferase activity is normally far in excess of that required for maximal rates of aspartate production. In rat hepatocytes incubated with lactate, ammonia, and ornithine the inhibition of both the cytosolic and mitochondrial isozymes of aspartate aminotransferase by AMB was partially blocked by the presence of ammonia and ornithine. When pyruvate was substituted for lactate as a carbon source with isolated hepatocytes, the presence of ammonia and ornithine blocked the inhibition by AMB of the mitochondrial but not the cytosolic isozyme of aspartate aminotransferase. Urea formation by cells incubated with lactate, ammonia, and ornithine was unaffected by AMB unless the cells were preincubated with the inhibitor prior to the addition of substrates. However, urea formation by cells incubated in the presence of pyruvate, ammonia, and ornithine was inhibited strongly by AMB even without preincubation. The results suggest that the stimulation of ureogenesis from ammonia and ornithine by pyruvate involves the cytosolic isozyme of aspartate aminotransferase. In contrast, the stimulation of ureogenesis elicited by lactate primarily involved mitochondrial aspartate aminotransferase.  相似文献   

9.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

10.
The zonal distribution of GSH metabolism was investigated by comparing hepatocytes obtained from the periportal (zone 1) or perivenous (zone 3) region by digitonin/collagenase perfusion. Freshly isolated periportal and perivenous cells had similar viability (dye exclusion, lactate dehydrogenase leakage and ATP content) and GSH content (2.4 and 2.7 mumol/g respectively). During incubation, periportal cells slowly accumulated GSH (0.35 mumol/h per g), whereas in perivenous cells a decrease occurred (-0.14 mumol/h per g). Also, in the presence of either L-methionine or L-cysteine (0.5 mM) periportal hepatocytes accumulated GSH much faster (3.5 mumol/h per g) than did perivenous cells (1.9 mumol/h per g). These periportal-perivenous differences were also found in cells from fasted rats. Efflux of GSH was faster from perivenous cells than from periportal cells, but this difference only explained 10-20% of the periportal-perivenous difference in accumulation. Furthermore, periportal cells accumulated GSH to a plateau 26-40% higher than in perivenous cells. There was no significant difference in gamma-glutamylcysteine synthetase or glutathione synthetase activity between the periportal and perivenous cell preparations. The periportal-perivenous difference in GSH accumulation was unaffected by inhibition of gamma-glutamyl transpeptidase or by 5 mM-glutamate or -glutamine, but was slightly diminished by 2 mM-L-methionine. This suggests differences between periportal and perivenous cells in their metabolism and/or transport of (sulphur) amino acids. Our results suggest that a lower GSH replenishment capacity of the hepatocytes from the perivenous region may contribute to the greater vulnerability of this region to xenobiotic damage.  相似文献   

11.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

12.
Clofibrate induces hypertrophy and hyperplasia and marked changes in the activities of various enzymes in rat liver. We examined the effects of treatment of rats with clofibrate on enzyme induction and on rates of metabolic flux in hepatocytes isolated from the periportal and perivenous zones of the liver. Clofibrate induced the activities of carnitine acetyltransferase (90-fold), carnitine palmitoyltransferase (3-fold) and NADP-linked malic enzyme (3-fold) to the same level in periportal as in perivenous hepatocytes, suggesting that these enzymes were induced uniformly throughout the liver acinus. Increased rates of palmitate metabolism and ketogenesis after clofibrate treatment were associated with: a more oxidised mitochondrial redox state; diminished responsiveness to glucagon and loss of periportal/perivenous zonation. Despite the marked liver enlargement and hyperplasia caused by clofibrate, the normal periportal/perivenous zonation of alanine aminotransferase and gluconeogenesis was preserved in livers of clofibrate-treated rats, indicating that clofibrate-induced hyperplasia does not disrupt the normal acinar zonation of these metabolic functions.  相似文献   

13.
In order to examine the pathways of hepatic glycogen repletion in the periportal and perivenous zones of the liver, [1-13C]glucose (99% enriched) was infused intraduodenally into conscious, 24-h fasted rats for 3 h. The liver was then quickly perfused in situ, and the cytoplasmic contents of the periportal and perivenous hepatocytes were selectively sampled by modification of the dual-digitonin-pulse technique (Quistorff, B., and Grunnet, N. (1987) Biochem. J. 243, 87-95). The 13C isotopic enrichment at each carbon position of the glucosyl units of hepatic glycogen was determined by 13C NMR and that of the C-1 position by gas chromatography-mass spectroscopy. From comparison of hepatic glycogen repleted by direct incorporation of plasma glucose (glucose----glucose-6-P----glucose-1-P----UDP-glucose----glycogen) was calculated to be 29% in the periportal zone and 35% in the perivenous zone, assuming equal glycogen synthetic rates within the two zones. Thus, the majority of glycogen is derived by an indirect route (glucose--------3-carbon unit--------glucose --------UDP-glucose--------glycogen) in both the periportal zone and in the perivenous zone. In conclusion, in a 24-h fasted rat there does not appear to be a major difference between the periportal and perivenous hepatocytes in the percent of glycogen synthesized by the direct pathway following a glucose load.  相似文献   

14.
Adult rat hepatocytes were kept in primary culture for 48 h under different hormonal conditions to induce an enzyme pattern which with respect to carbohydrate metabolism approximated that of periportal and perivenous hepatocytes in vivo. 1. Glucagon-treated cells compared with control cells possessed a lower activity of glucokinase, a 4.5-fold higher activity of phosphoenolpyruvate carboxykinase and unchanged levels of glucose-6-phosphatase, phosphofructokinase, fructose-bisphosphatase and pyruvate kinase; they resembled in a first approximation the periportal cell type and are called for simplicity 'periportal'. Inversely, insulin-treated cells compared with control cells contained a 2.2-fold higher activity of glucokinase, a slightly decreased activity of phosphoenolpyruvate carboxykinase, increased activities of phosphofructokinase and pyruvate kinase and unaltered levels of glucose-6-phosphatase and fructose-bisphosphatase; they resembled perivenous cells and are called simply 'perivenous'. Gluconeogenesis and glycolysis were studied under various substrate and hormone concentrations. 2. Physiological concentrations of glucose (5 mM) and lactate (2 mM) gave about 80% saturation of gluconeogenesis from lactate and less than 15% saturation of glycolysis at a simultaneous 40% inhibition of the glycolytic rate by lactate. 3. Comparison of the two cell types showed that under identical assay conditions (5 mM glucose, 2 mM lactate, 0.5 nM insulin, 0.1 muM dexamethasone) gluconeogenesis was 1.5-fold faster in the 'periportal' cells and glycolysis was 2.4-fold faster in the 'perivenous' cells. 4. Metabolic rates were under short-term hormonal control. Insulin increased glycolysis three fold in both cell types with a half-maximal effect at about 0.4 nM, but did not influence the gluconeogenic rate. Glucagon inhibited glycolysis by 70% with a half-maximal effect at about 0.1 nM. Gluconeogenesis was stimulated by glucagon (half-maximal dose: 0.5 nM) 1.8-fold only in 'periportal' cells containing high phosphoenolpyruvate carboxykinase activity, not in the 'perivenous' cells with a low level of this enzyme. 5. A comparison of the two cell types showed that with maximally stimulating hormone concentrations gluconeogenesis was threefold faster in 'periportal' cells and glycolysis was eightfold faster in 'perivenous' cells. The results support the view that periportal and perivenous hepatocytes in vivo catalyse gluconeogenesis and glycolysis at inverse rates.  相似文献   

15.
After induction of a perivenous liver cell necrosis by CCl4 pretreatment of the rat, ammonia uptake by perfused liver is decreased. This was due to an inhibition of glutamine synthesis from added ammonia, whereas urea synthesis was not affected by CCl4 pretreatment. The data confirm recent findings on hepatocyte heterogeneity in ammonia metabolism and are explained by an impairment of perivenous glutamine synthetase, but not of periportal urea synthesis, by the perivenous liver cell necrosis induced by CCl4. Regarding the pathogenesis of hyperammonemia in acute severe liver disease like CCl4 poisoning, the data point to a role of an impaired glutamine synthesis, but not to an impairment of urea synthesis.  相似文献   

16.
The relative importance of the mitochondrial and cytosolic alanine aminotransferase isozymes for providing pyruvate from alanine for further metabolism in the mitochondrial compartment was examined in the isolated perfused rat liver. The experimental rationale employed depends upon the supposition that gluconeogenesis from alanine and the decarboxylation of infused [1-14C]alanine should be diminished by pyruvate transport inhibitors (e.g., alpha-cyanocinnamate) in proportion to the contribution of the cytosolic alanine aminotransferase for generating pyruvate. alpha-Cyanocinnamate inhibited the endogenous rate of glucose production in perfused livers derived from 24-h-fasted rats. The rate of [1-14C]alanine decarboxylation at low (1 mM) and high (10 mM) perfusate alanine concentrations was inhibited by 9.5 and 42%, respectively, in the presence of alpha-cyanocinnamate. In livers from fasted animals perfused with either 1 or 10 mM alanine, alpha-cyanocinnamate caused a substantial increase in the rates of both lactate and pyruvate production. Elevating the hepatic ketogenic rate during infusion of acetate in livers, perfused with alanine, stimulated both the rates of alanine decarboxylation and glucose production; the extent of stimulation of these two metabolic parameters was determined to be a function of the alanine concentration in the perfusate. The stimulation of the rate of alanine decarboxylation during acetate-induced ketogenesis was reversed by co-infusion of alpha-cyanocinnamate with simultaneous increases in the rates of lactate and pyruvate production. The results indicate that during rapid ketogenesis, cytosolic transamination of alanine contributes at least 19% (at 1 mM alanine) and 55% (at 10 mM alanine) of the pyruvate for gluconeogenesis.  相似文献   

17.
1. Rats were exposed to hypobaric hypoxia (equivalent altitude 4500 m), 2 x 2 hr per day, for 5 days. Isolated hepatocytes were prepared on day 6 after 18 hr of fast and also from control normoxic animals. The hepatocytes were incubated (120 min) with various substrates. 2. ATP contents were lower in hepatocytes from exposed as compared to control animals whether at the beginning (14%) or at the end (-6 to -33%) of incubation depending on the substrate. 3. Gluconeogenesis from all precursors (lactate, alanine, pyruvate, glutamine) was significantly reduced (40-50%) in exposed as compared to control animals. 4. Ureogenesis from alanine and from pyruvate + NH4Cl was also markedly depressed in exposed animals but no differences were noticed with glutamine or lactate + NH4Cl and alanine + NH4Cl. 5. Results are discussed in relation to known effects of acute and chronic hypoxia, interrelationship between gluconeogenesis and ureogenesis, taking into account the inhomogeneity of liver and the metabolic properties of periportal and perivenous hepatocytes.  相似文献   

18.
In human liver, unlike in rat liver, there is no apparent acinar heterogeneity of total cellular activity of phosphoenolpyruvate carboxykinase [Wimmer, Luttringer & Columbi (1990) Histochemistry 93, 409-415]. Since the intracellular compartmentation of phosphoenolpyruvate carbonxykinase differs in rat and human liver, we examined the acinar heterogeneity of cytosolic and organelle-bound activities of this enzyme in the guinea pig, which shows a more similar intracellular compartmentation of enzyme activity to human liver than does the rat. Cytosolic phosphoenolpyruvate carboxykinase activity was higher in periportal than in perivenous hepatocytes, whereas the organelle-bound activity was similar in the two cell populations. Aspartate aminotransferase and alanine aminotransferase activities showed a similar distribution to phosphoenolpyruvate carboxykinase, with a higher cytosolic activity in periportal than in perivenous hepatocytes but a similar organelle-bound activity in the two cell populations. Data on the acinar zonation of enzymes determined in whole cells or tissue should be interpreted cautiously if the enzyme activity is present in more than one subcellular compartment.  相似文献   

19.
The action of cyanide (500 μM ), 2,4-dinitrophenol (50 μM ) and atractyloside (100 μM ) on glycogen catabolism and oxygen uptake was investigated in the bivascularly perfused liver of fed rats. Cyanide, 2,4-dinitrophenol and atractyloside were infused at identical rates into the hepatic artery in either the anterograde or retrograde perfusion. The accessible aqueous cell spaces were determined by means of the multiple-indicator dilution technique. Glucose release, oxygen uptake and glycolysis were measured as metabolic parameters. Oxygen uptake changes per unit cell space caused by atractyloside (inhibition) and 2,4-dinitrophenol (stimulation) were equal in the retrograde perfusion (periportal cells) and the anterograde perfusion (space enriched in perivenous cells); the decreases caused by cyanide were higher in the retrograde perfusion. Glucose release from periportal cells was not increased upon inhibition of oxidative phosphorylation, a phenomenon which was independent of the mechanism of action of the inhibitor. There were nearly identical changes in glycolysis in the periportal and perivenous cells. It was concluded that: (1) oxygen concentration in the perfused rat liver, if maintained above 100 μM , had little influence on the zonation of the respiratory activity; (2) in spite of the lower activities of the key enzymes of glycolysis in the periportal hepatocytes, as assayed under standard conditions, these cells were as effective as the perivenous ones in generating ATP in the cytosol when oxidative phosphorylation was impaired; (3) the key enzymes of glycogenolysis and glycolysis in periportal and perivenous cells responded differently to changes in the energy charge.  相似文献   

20.
Hepatocyte heterogeneity in the metabolism of amino acids and ammonia.   总被引:6,自引:0,他引:6  
With respect to hepatocyte heterogeneity in ammonia and amino acid metabolism, two different patterns of sublobular gene expression are distinguished: 'gradient-type' and 'strict- or compartment-type' zonation. An example for strict-type zonation is the reciprocal distribution of carbamoylphosphate synthase and glutamine synthase in the liver lobule. The mechanisms underlying the different sublobular gene expressions are not yet settled but may involve the development of hepatic architecture, innervation, blood-borne hormonal and metabolic factors. The periportal zone is characterized by a high capacity for uptake and catabolism of amino acids (except glutamate and aspartate) as well as for urea synthesis and gluconeogenesis. On the other hand, glutamine synthesis, ornithine transamination and the uptake of vascular glutamate, aspartate, malate and alpha-ketoglutarate are restricted to a small perivenous hepatocyte population. Accordingly, in the intact liver lobule the major pathways for ammonia detoxication, urea and glutamine synthesis, are anatomically switched behind each other and represent in functional terms the sequence of the periportal low affinity system (urea synthesis) and a previous high affinity system (glutamine synthesis) for ammonia detoxication. Perivenous glutamine synthase-containing hepatocytes ('scavenger cells') act as a high affinity scavenger for the ammonia, which escapes the more upstream urea-synthesizing compartment. Periportal glutaminase acts as a pH- and hormone-modulated ammonia-amplifying system in the mitochondria of periportal hepatocytes. The activity of this amplifying system is one crucial determinant for flux through the urea cycle in view of the high Km (ammonia) of carbamoylphosphate synthase, the rate-controlling enzyme of the urea cycle. The structural and functional organization of glutamine and ammonia-metabolizing pathways in the liver lobule provides one basis for the understanding of a hepatic role in systemic acid base homeostasis. Urea synthesis is a major pathway for irreversible removal of metabolically generated bicarbonate. The lobular organization enables the adjustment of the urea cycle flux and accordingly the rate of irreversible hepatic bicarbonate elimination to the needs of the systemic acid base situation, without the threat of hyperammonemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号