首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fluorescence imaging in the second near‐infrared optical window (NIR‐II, 900‐1700 nm) has become a technique of choice for noninvasive in vivo imaging in recent years. Greater penetration depths with high spatial resolution and low background can be achieved with this NIR‐II window, owing to low autofluorescence within this optical range and reduced scattering of long wavelength photons. Here, we present a novel design of confocal laser scanning microscope tailored for imaging in the NIR‐II window. We showcase the outstanding penetration depth of our confocal setup with a series of imaging experiments. HeLa cells labeled with PbS quantum dots with a peak emission wavelength of 1276 nm can be visualized through a 3.5‐mm‐thick layer of scattering medium, which is a 0.8% Lipofundin solution. A commercially available organic dye IR‐1061 (emission peak at 1132 nm), in its native form, is used for the first time, as a NIR‐II fluorescence label in cellular imaging. Our confocal setup is capable of capturing optically sectioned images of IR‐1061 labeled chondrocytes in fixed animal cartilage at a depth up to 800 μm, with a superb spatial resolution of around 2 μm.   相似文献   

2.
Clinicians need a way to rapidly and reliably test the correct functioning of near‐infrared spectroscopy (NIRS)–based oximeters. Therefore, optical phantoms for quality assessment of NIRS oximeters are needed. The fabrication of such phantoms that mimic the optical properties of biological tissue in the NIR range represents a challenge. To enable their development, the aim was to characterize the absorption and scattering spectra of different dyes. The optical properties of silicone SILPURAN 2420 with 11 color pastes of type ELASTOSIL were measured in the 500 to 1000 nm range by a spectrometer with an integrating sphere. In addition, two commercial frequency‐domain NIRS devices, the ISS OxiplexTS and the ISS Imagent, were used to assess the optical properties at specific wavelengths. The evaluated colors present mostly features in the visible range below 650 nm, but two colors include peaks in the near‐infrared region, simulating low tissue oxygenation values. These colors were used to create an optical phantom, which matched the designed StO2 value within an error of only 4%. This set of dyes already enables simulating many different spectra, thus achieving a first step on the way to a long‐term stable comparison and validation method.   相似文献   

3.
Photoacoustic imaging is a noninvasive imaging technique having the advantages of high‐optical contrast and good acoustic resolution at improved imaging depths. Light transport in biological tissues is mainly characterized by strong optical scattering and absorption. Photoacoustic microscopy is capable of achieving high‐resolution images at greater depth compared to conventional optical microscopy methods. In this work, we have developed a high‐resolution, acoustic resolution photoacoustic microscopy (AR‐PAM) system in the near infra‐red (NIR) window II (NIR‐II, eg, 1064 nm) for deep tissue imaging. Higher imaging depth is achieved as the tissue scattering at 1064 nm is lesser compared to visible or near infrared window‐I (NIR‐I). Our developed system can provide a lateral resolution of 130 μm, axial resolution of 57 μm, and image up to 11 mm deep in biological tissues. This 1064‐AR‐PAM system was used for imaging sentinel lymph node and the lymph vessel in rat. Urinary bladder of rat filled with black ink was also imaged to validate the feasibility of the developed system to study deeply seated organs.   相似文献   

4.
Polarization effects in light scattering are sensitive indicators of cell structure and structural changes in time. In the spectral regions where the optical properties of the scatterers are relatively constant, the scattering pattern scales, it contracts or expands in a predictable manner as a function of the wavelength. In the spectral regions where the optical properties are strongly wavelength dependent (near absorption bands, etc.) the scattering curves do not scale, but change drastically in phase and amplitude as the wavelength is varied. Reported here is an empirical study of the magnitude of the influence of absorption on the polarization effects in light scattering. Scattering curves have been obtained for human red blood cells in the absorption band (blue light) and far from the absorption band (red light). The scattering at these wavelengths shows very strong nonscaling differences. These observations suggest the use of polarization effects in light scattering and their wavelength dependence for the studies of structural changes in cell nuclei. Nucleoproteins have strong absorption, optical rotatory dispersion and circular dichroism bands in the ultraviolet region of the spectrum, whereas there is little ψ-dependence in the visible range. There is also the possibility of binding specific chromophoric dyes to cell components, thus introducing absorption bands in the visible range, where scattering instrumentation and laser light sources are more readily available.  相似文献   

5.
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)‐near infrared (NIR)‐I light imaging. If the skull optical clearing window is available for NIR‐II, the imaging depth will be further enhanced. Herein, we developed a vis‐NIR‐II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR‐II. Using a NIR‐II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis‐NIR‐II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR‐II laser‐induced targeted injury of cortical single vessel. This work enhances the ability of NIR‐II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.  相似文献   

6.
Chenghui Li  Peng Wu 《Luminescence》2019,34(8):782-789
Transition metal ion‐doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self‐absorption/energy transfer, longer excited‐state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near‐infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu‐doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu‐doped QDs that are capable of NIR emission. Applications of Cu‐doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu‐doped QDs for bioanalysis and bioimaging are also summarized.  相似文献   

7.
In this study, CuS nanoparticles with optical absorption covering both near‐infrared I (NIR‐I) and NIR‐II biological windows were prepared and served as the contrast agents for multispectral photoacoustic imaging. The physiological parameters including concentrations of deoxyhemoglobin and oxyhemoglobin as well as the water content in the tumor location were quantified based on the multispectral photoacoustic reconstruction method. More importantly, the concentration of CuS nanoparticles/drugs accumulated in the tumor was also recovered after intravenously injection, which are essential for image‐guided cancer theranostics. In addition, phantom and in vivo experimental tests were performed to inspect and compare the imaging depth and signal‐to‐noise ratio (SNR) between the two NIR biological windows. Interestingly, we discovered that a higher SNR was obtained in the NIR‐II window than that in the NIR‐I window. Meanwhile, the multispectral imaging results also demonstrated that the imaging contrast and penetration depth in the NIR‐II window were also significantly improved as compared to those from the NIR‐I window.   相似文献   

8.
Mie scattering effects create serious problems for the interpretation of Fourier‐transform infrared spectroscopy spectra of single cells and tissues. During recent years, different techniques were proposed to retrieve pure absorbance spectra from spectra with Mie distortions. Recently, we published an iterative algorithm for correcting Mie scattering in spectra of single cells and tissues, which we called “the fast resonant Mie scatter correction algorithm.” The algorithm is based on extended multiplicative signal correction (EMSC) and employs a meta‐model for a parameter range of refractive index and size parameters. In the present study, we suggest several improvements of the algorithm. We demonstrate that the improved algorithm reestablishes chemical features of the measured spectra, and show that it tends away from the reference spectrum employed in the EMSC. We suggest strategies for choosing parameter ranges and other model parameters such as the number of principal components of the meta‐model and the number of iterations. We demonstrate that the suggested algorithm optimizes an error function of the refractive index in a forward Mie model. We suggest a stop criterion for the iterative algorithm based on the error function of the forward model.   相似文献   

9.
We exploited the synthesis of near‐infrared (NIR) emitting ternary‐alloyed CdTeSe and quaternary‐alloyed CdZnTeSe quantum dots (QDs) with rod and tetrapod morphologies, which have tunable emission in the NIR electromagnetic spectrum. The morphologies of the QDs depended strongly on their growth kinetics, probably due to the coordinating ligands used in the preparation. Using oleic acid, stearic acid and hexadecylamine as ligands and keeping the same reaction parameters, QDs with tetrapod and rod morphologies were created. Not only had the capping ligands influenced the morphologies of QDs, but also they influenced the optical properties of QDs. The molar ratios of Cd/Zn and Te/Se upon preparation were adjusted for investigating the effect of composition on the properties of resulting QDs. By varying the composition of QDs, the photoluminescence (PL) wavelength of QDs was tuned from 650 nm to 800 nm. To enhance PL efficiency and stability, QDs were coated with a CdZnS shell. As NIR PL has numerous advantages in biological imaging detection, these QDs hold great potential for application. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The nonlinear optical properties of single gold nanorods (GNRs) with a large diameter of ~200 nm and a long length of ~800 nm were investigated by using a focused femtosecond (fs) laser light with tunable wavelength. While the linear and nonlinear optical properties of small-sized GNRs have been extensively studied, the nonlinear optical properties of large-sized GNRs and the effects of high-order surface plasmon resonances remain unexplored. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed in the nonlinear response spectra, and their dependences on excitation wavelength and polarization were examined. The scattering and absorption spectra of the small- and large-sized GNRs were compared by using the discrete dipole approximation method. It was found that the extinction of large-sized GNRs is dominated by scattering rather than absorption, which is dominant in small-sized GNRs. In addition, it was revealed that the excitation wavelength-dependent SHG of a GNR is governed by the linear scattering of the GNR and the maximum SHG is achieved at the valley of the scattering spectrum. In comparison, the excitation wavelength dependence of TPL is determined by the absorption spectrum of the GNR. The polarization-dependent SHG of a GNR exhibits a strong dependence on the dimension of the GNR, and it may appear as bipolar distributions parallel or perpendicular to the long axis of the GNR or multipole distributions.  相似文献   

11.
We introduce a simple new approach for time‐resolved multiplexed analysis of complex systems using near‐infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user‐friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time‐gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely‐available software, has the advantage of time‐resolved NIR imaging, including better tissue penetration and background‐free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image‐guided surgery or optical tomography.   相似文献   

12.
Absorption and scattering efficiencies of semiconductor-coated Au nanoshell have been studied by the extended Mie theory for their possible solar cell, optical imaging, and photothermal applications, etc. The effect of Au shell layer thickness, core size, and surrounding medium on the absorption and scattering efficiencies at the localized surface plasmon resonance (LSPR) wavelengths has been reported. It has been found that both the absorption and scattering efficiencies get blue-shifted with an increase in Au shell layer thickness from 2 to 10 nm and with an increase in surrounding refractive index whereas the corresponding LSPR peaks shift towards red. It has also been found that the spectra are red-shifted with an increase in the core radius from 20 to 40 nm while keeping the shell thickness same. The effect of shell thickness on the absorption peak position and absorption linewidth has also been studied. Hence, the optical response of both CdSe- and CdTe-coated Au nanoshells can be tuned and controlled from the visible to the near-infrared (NIR) region of the electromagnetic (EM) spectrum. Finally, the CdSe-coated Au nanoshell exhibits high scattering and absorption efficiencies in comparison to the CdTe-coated nanoshell.  相似文献   

13.
In this report, we present a breast imaging technique combining high‐resolution near‐infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye‐labeled amino‐terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830‐ATF‐IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830‐ATF‐IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4‐ and 10‐fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non‐targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor‐targeted NIR830‐ATF‐IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this report, an integrated optical platform based on spatial illumination together with laser speckle contrast technique was utilized to measure multiple parameters in live tissue including absorption, scattering, saturation, composition, metabolism, and blood flow. Measurements in three models of tissue injury including drug toxicity, artery occlusion, and acute hyperglycemia were used to test the efficacy of this system. With this hybrid apparatus, a series of structured light patterns at low and high spatial frequencies are projected onto the tissue surface and diffuse reflected light is captured by a CCD camera. A six position filter wheel, equipped with four bandpass filters centered at wavelengths of 650, 690, 800 and 880 nm is placed in front of the camera. Then, light patterns are blocked and a laser source at 650 nm illuminates the tissue while the diffusely reflected light is captured by the camera through the two remaining open holes in the wheel. In this manner, near‐infrared (NIR) and laser speckle images are captured and stored together in the computer for off‐line processing to reconstruct the tissue's properties. Spatial patterns are used to differentiate the effects of tissue scattering from those of absorption, allowing accurate quantification of tissue hemodynamics and morphology, while a coherent light source is used to study blood flow changes, a feature which cannot be measured with the NIR structured light. This combined configuration utilizes the strengths of each system in a complementary way, thus collecting a larger range of sample properties. In addition, once the flow and hemodynamics are measured, tissue oxygen metabolism can be calculated, a property which cannot be measured independently. Therefore, this merged platform can be considered a multiparameter wide‐field imaging and spectroscopy modality. Overall, experiments demonstrate the capability of this spatially coregistered imaging setup to provide complementary, useful information of various tissue metrics in a simple and noncontact manner, making it attractive for use in a variety of biomedical applications.  相似文献   

15.
While colloidal quantum dot photovoltaic devices (CQDPVs) can achieve a power conversion efficiency (PCE) of ≈12%, their insufficient optical absorption in the near‐infrared (NIR) regime impairs efficient utilization of the full spectrum of visible light. Here, high‐efficiency, solution‐processed, hybrid series, tandem photovoltaic devices are developed featuring CQDs and organic bulk heterojunction (BHJ) photoactive materials for front‐ and back‐cells, respectively. The organic BHJ back‐cell efficiently harvests the transmitted NIR photons from the CQD front‐cell, which reinforces the photon‐to‐current conversion at 350–1000 nm wavelengths. Optimizing the short‐circuit current density balance of each sub‐cell and creating a near ideal series connection using an intermediate layer achieve a PCE (12.82%) that is superior to that of each single‐junction device (11.17% and 11.02% for the CQD and organic BHJ device, respectively). Notably, the PCE of the hybrid tandem device is the highest among the reported CQDPVs, including single‐junction devices and tandem devices. The hybrid tandem device also exhibits almost negligible degradation after air storage for 3 months. This study suggests a potential route to improve the performance of CQDPVs by proper hybridization with NIR‐absorbing photoactive materials.  相似文献   

16.
Previous studies for melanin visualization in the retinal pigment epithelium (RPE) have exploited either its absorption properties (using photoacoustic tomography or photothermal optical coherence tomography [OCT]) or its depolarization properties (using polarization sensitive OCT). However, these methods are only suitable when the melanin concentration is sufficiently high. In this work, we present the concept of hyperspectral OCT for melanin visualization in the RPE when the concentration is low. Based on white light OCT, a hyperspectral stack of 27 wavelengths (440‐700 nm) was created in post‐processing for each depth‐resolved image. Owing to the size and shape of the melanin granules in the RPE, the variations in backscattering coefficient as a function of wavelength could be identified—a result which is to be expected from Mie theory. This effect was successfully identified both in eumelanin‐containing phantoms and in vivo in the low‐concentration Brown Norway rat RPE.   相似文献   

17.
In recent years, significant work has been devoted to the use of angle‐resolved elastic scattering for the extraction of nuclear morphology in tissue. By treating the nucleus as a Mie scattering object, techniques such as angle‐resolved low‐coherence interferometry (a/LCI) have demonstrated substantial success in identifying nuclear alterations associated with dysplasia. Because optical biopsies are inherently noninvasive, only a small, discretized portion of the 4π scattering field can be collected from tissue, limiting the amount of information available for diagnostic purposes. In this work, we comprehensively characterize the diagnostic impact of variations in angular sampling, range and noise for inverse light scattering analysis of nuclear morphology, using a previously reported dataset from 40 patients undergoing a/LCI optical biopsy for cervical dysplasia. The results from this analysis are applied to a benchtop scanning a/LCI system which compromises angular range for wide‐area scanning capability. This work will inform the design of next‐generation optical biopsy probes by directing optical design towards parameters which offer the most diagnostic utility.   相似文献   

18.
Near‐infrared (NIR) radiation has been employed using one‐ and two‐photon excitation of fluorescence imaging at wavelengths 650–950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR‐low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100–1,350 nm), third (III, 1,600–1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  相似文献   


19.
The absorption bands of cis-unsaturation and the carbon chain length of the fatty acid moieties in oil appear in the near infrared (NIR) wavelength region, especially around 1600-1800 nm. Using this region, a new estimation method for fatty acid composition analysis is proposed. Because the differences of the original NIR spectra are miniscule even in this region, the second derivative NIR spectra were examined in order to estimate the fatty acid composition in oil exclusively from the spectral patterns obtained. The parameters for calculating the second derivative NIR spectra were examined to make the spectral difference clearer. In any parameter, the absorption band was shifted to the shorter wavelength region when the unsaturation in fatty acid moieties increased, and it was shifted to the longer wavelength region when the carbon chain length increased. When the parameters were correct, this NIR method can estimate the fatty acid composition roughly, but simply, easily, and sometimes nondestructively.  相似文献   

20.
Infrared spectroscopy of single cells and tissue is affected by Mie scattering. During recent years, several methods have been proposed for retrieving pure absorbance spectra from such measurements, while currently no user‐friendly version of the state‐of‐the‐art algorithm is available. In this work, an open‐source code for correcting highly scatter‐distorted absorbance spectra of cells and tissues is presented, as well as several improvements of the latest version of the Mie correction algorithm based on extended multiplicative signal correction (EMSC) published by Konevskikh et al. In order to test the stability of the code, a set of apparent absorbance spectra was simulated. To this purpose, pure absorbance spectra based on a Matrigel spectrum are simulated. Scattering contributions where obtained by mimicking the scattering features observed in a set of experimentally obtained spectra . It can be concluded that the algorithm is not depending strongly on the reference spectrum used for initializing the algorithm and retrieves well the underlying pure absorbance spectrum. The calculation time of the algorithm is considerably improved with respect to the resonant Mie scattering EMSC algorithm used by the community today.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号