首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
The existence of an “RNA world” as an early step in the history of life increases the interest for the characterization of these biomolecules. The hairpin ribozyme studied here is a self‐cleaving/ligating motif found in the minus strand of the satellite RNA associated with Tobacco ringspot virus. Surface‐enhanced Raman spectroscopy (SERS) is a powerful tool to study trace amounts of RNA. In controlled conditions, a SERS signal is proportional to the amount of free residues adsorbed on the metal surface. On RNA cleavage, residues are unpaired and free to interact with metal. SERS procedures are used to monitor and quantify the catalysis of ribozyme cleavage at biological concentrations in real time; thus, they propose an interesting alternative to electrophoretic methods. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 384–390, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
Fibrillar forms of the Amyloid‐β (Aβ) protein have been implicated in the early stages of Alzheimer's disease (AD), however there are no standardised assays for soluble Aβ oligomer biomarkers that provide the best indication of the disease progression [1,2]. As a step towards a fast and label‐free method for testing different AD biomarkers, we have combined laser nano‐textured substrates with a SERS mapping technique and validated it using soluble Aβ‐40 oligomers [3‐5]. The nano‐textured SERS substrates provide fast (&5 min), label‐free spectra associated with soluble Aβ‐40 oligomers down to a concentration of 10 nM. Statistical analysis of the spectral intensities mapped over the substrate surface shows a quantitative correlation with the oligomer concentration.

Schematics of experiments: SERS mapping of Aβ‐40 (left figure: measured SERS intensity overlayed with an SEM image of ripples) was carried out on the laser nano‐textured (ripple) surface of sapphire and statistical analysis of the SERS intensity was carried out for qualitative (a high SERS intensity at low probability) and quantitative (a moderate SERS intenisty at the highest probability) measures. Quantitative statistical analysis of SERS mapping data can be performed off line for cross correlations with other known SERS signatures.  相似文献   


3.
Surface‐enhanced Raman spectroscopy (SERS) is garnering considerable attention for the swift diagnosis of pathogens and abnormal biological status, that is, cancers. In this work, a simple, fast and inexpensive optical sensing platform is developed by the design of SERS sampling and data analysis. The pretreatment of spectral measurement employed gold nanoparticle colloid mixing with the serum from patients with colorectal cancer (CRC). The droplet of particle‐serum mixture formed coffee‐ring‐like region at the rim, providing strong and stable SERS profiles. The obtained spectra from cancer patients and healthy volunteers were analyzed by unsupervised principal component analysis (PCA) and supervised machine learning model, such as support‐vector machine (SVM), respectively. The results demonstrate that the SVM model provides the superior performance in the classification of CRC diagnosis compared with PCA. In addition, the values of carcinoembryonic antigen from the blood samples were compiled with the corresponding SERS spectra for SVM calculation, yielding improved prediction results.  相似文献   

4.
The characteristic vibrational spectroscopic fingerprint of Raman reporter molecules adsorbed on noble metal nanoparticles is employed for the identification of target proteins by the corresponding surface‐enhanced Raman scattering (SERS) nanotag‐labeled antibodies. Here, we present the modular synthesis of thiolated polyenes with two to five C═C double bonds introduced via stepwise Wittig reactions. The experimental characterization of their electronic and vibrational properties is complemented by density functional theory calculations. Highly SERS‐active nanotags are generated by using the thiolated polyenes as Raman reporter molecules in Au/Au core/satellite supraparticles with multiple hot spots. The cytokines IL‐1β and IFN‐γ are detected in a duplex SERS‐based lateral flow assay on a nitrocellulose test strip by Raman microscopy. The thiolated polyenes are suitable for use in immuno‐SERS applications such as point‐of‐care testing as well as cellular and tissue imaging.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a wide range of survival times. We aimed to explore prognostic factors related to short survival based on clinical features and plasma metabolic signatures using surface‐enhanced Raman spectroscopy (SERS). One hundred and thirty‐eight sporadic ALS cases were enrolled serially, including 62 for the short‐duration group (≤3 years) and 76 for the long‐duration group (>3 years). Multivariate analysis showed that an older age of onset (>60 years; odds ratio [OR] = 3.98, 95% CI: 1.09‐14.53), lower body mass index (BMI) (<18.5; OR = 6.80, 95% CI: 1.36‐33.92), and lower ALSFRS‐R score (<35; OR = 6.03, 95% CI: 1.42‐25.63) were associated with higher odds of tracheotomy or death, while a higher uric acid (UA) level showed a protective effect (>356.36 μmol/L; OR = 0.19, 95% CI: 0.05‐0.73). SERS analysis showed significant differences between the two groups, and pathway analysis highlighted five main metabolic pathways, including metabolisms of glutathione, pyrimidine, phenylalanine, galactose, and phenylalanine‐tyrosine‐tryptophan biosynthesis. In conclusion, age of onset, BMI, ALSFRS‐R score and UA, together with dysregulation of glucose, amino acid, nucleic acid, and antioxidant metabolism contributed to disease progression, and are therefore potential therapeutic targets for ALS.  相似文献   

6.
We propose and compare multiple approaches to automatically process data measured through surface‐enhanced Raman scattering (SERS), in the context of intracellular molecule probing. It relies on locally detecting the most relevant spectra to retrieve all data independently through indexing, thus avoiding any pre‐filtering which occurs with standard processing methods. We first assess our approach on simulated data of the spectrum of Rhodamine 6G, and then validate high‐performing methods on experimental measurements of this compound. The optimized method is then utilized to extract and classify the complex SERS response behavior of gold nanoparticles taken in live cells. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Using silver nanoparticles (AgNPs) as the nanocatalyst, l ‐cysteine rapidly reduced HAuCl4 to make a stable gold nanoparticle sol (Ag/AuNP) that had a high surface‐enhanced Raman scattering (SERS) activity in the presence of Victoria blue 4R (VB4r) molecular probes. Under the selected conditions, chondroitin sulfate (Chs) reacted with the VB4r probes to form associated complexes that caused the SERS effect to decrease to 1618 cm?1. The decreased SERS intensity was linear to the Chs concentration in the range 3.1–500 ng/ml, with a detection limit of 1.0 ng/ml Chs. Accordingly, we established a simple and sensitive SERS quantitative analysis method to determine Chs in real samples, with a relative standard deviation of 1.47–3.16% and a recovery rate of 97.6–104.2%.  相似文献   

8.
On‐site identification and quantification of chemicals is critical for promoting food safety, human health, homeland security risk assessment, and disease diagnosis. Surface‐enhanced Raman spectroscopy (SERS) has been widely considered as a promising method for on‐site analysis due to the advantages of nondestructive, abundant molecular information, and outstanding sensitivity. However, SERS for on‐site application has been restricted not only by the cost, performance, and portability of portable Raman instruments, but also by the sampling ability and signal enhancing performance of the SERS substrates. In recent years, the performance of SERS for on‐site analysis has been improved through portable Raman instruments, SERS substrates, and other combined technologies. In this review, popular commercial portable Raman spectrometers and the related technologies for on‐site analysis are compared. In addition, different types of SERS substrates for on‐site application are summarized. SERS combined with other technologies, such as electrochemical and microfluidics are also presented. The future perspective of SERS for on‐site analysis is also discussed.  相似文献   

9.
Combining serum albumin via adsorption‐exfoliation on hydroxyapatite particles (HAp) with surface‐enhanced Raman scattering (SERS), we developed a novel quantitative analysis of albumin method from blood serum for cancers screening applications. The quantitatively analysis obtained by our HAp method had a good linear relationship from 1 to 10 g/dL, and the lower limit of detection was less than the albumin prognostic factor for disease (3.5 g/dL). Serum albumin was adsorbed and exfoliated by HAp from serum samples of liver cancer patients, breast cancer patients and healthy volunteers and mixed with silver colloids to perform SERS spectral analysis. Based on the PLS‐SVM algorithm, the diagnostic accuracies of liver cancer patients and breast cancer patients were 100% and 96.68%, respectively. Moreover, this algorithm successfully predicted the unidentified subjects with a diagnostic accuracy of 93.75%. This exploratory work demonstrated that HAp‐adsorbed‐exfoliated serum proteins combined with SERS spectroscopy has great potential for cancer screening.  相似文献   

10.
11.
Currently the most sensitive method for localizing lung cancers in central airways is autofluorescence bronchoscopy (AFB) in combination with white light bronchoscopy (WLB). The diagnostic accuracy of WLB + AFB for high grade dysplasia (HGD) and carcinoma in situ is variable depending on physician's experience. When WLB + AFB are operated at high diagnostic sensitivity, the associated diagnostic specificity is low. Raman spectroscopy probes molecular vibrations and gives highly specific, fingerprint‐like spectral features and has high accuracy for tissue pathology classification. In this study we present the use of a real‐time endoscopy Raman spectroscopy system to improve the specificity. A spectrum is acquired within 1 second and clinical data are obtained from 280 tissue sites (72 HGDs/malignant lesions, 208 benign lesions/normal sites) in 80 patients. Using multivariate analyses and waveband selection methods on the Raman spectra, we have demonstrated that HGD and malignant lung lesions can be detected with high sensitivity (90%) and good specificity (65%).

  相似文献   


12.
Modified nucleoside in urine samples is one of the most common biomarkers for cancer screening. Therefore, we developed a novel detection method for modified nucleoside detection in human urine. In this work, the modified nucleoside from real cancer patient's urine samples was first separated and purified using the affinity chromatography (AC) technology relying on its specific adsorption capacity. Then, surface‐enhanced Raman spectroscopy (SERS) technology with the capability of single molecular detection was used to sensitively characterize the biomolecular features of modified nucleoside. A total of 141 high‐quality SERS spectra of urinary modified nucleoside can be obtained from 50 gastric cancer patients and 43 breast cancer patients, as well as 48 healthy volunteers. Using principal component analysis combined with linear discriminant analysis (PCA‐LDA), the diagnostic sensitivities for identifying gastric cancer vs normal, breast cancer vs normal, gastric cancer vs breast cancer were 84.0%, 76.7% and 82.0%, respectively, and the corresponding diagnostic specificities for each combination were 95.8%, 87.5% and 90.7%, respectively. These results show that this novel method based on urinary modified nucleoside detection combining AC and SERS technologies holds promising potential for developing a specific, non‐invasive and label‐free tool for cancer screening.   相似文献   

13.
According to EU summary report on zoonoses, zoonotic agents and food‐borne outbreaks in 2017, Campylobacter was the most commonly reported gastrointestinal bacterial pathogen in humans in the EU. Unfortunately, the standard methods for the detection of thermotolerant Campylobacter spp. in foods are time‐consuming. Additionally, the qualified staff is obligatory. For this reason, new methods of pathogens detection are needed. The present work demonstrates that surface‐enhanced Raman scattering (SERS) is a reliable and fast method for detection of Campylobacter spp. in food samples. The proposed method combines the SERS measurements performed on an Ag/Si substrate with two initial steps of the ISO standard procedure. Finally, the principal component analysis (PCA) allows for statistical classification of the studied bacteria. By applying the proposed ISO‐SERS‐PCA method in the case of Campylobacter bacteria the total detection time may be reduced from 7 to 8 days required by ISO method to 3 to 4 days in the case of SERS‐based approach.  相似文献   

14.
Direct competitive chemiluminescence immunoassays (CLIA) based on gold‐coated magnetic nanospheres (Au‐MNPs) were developed for rapid analysis of chloramphenicol (CAP). The Au‐MNPs were modified with carboxyl groups and amino groups by 11‐mercaptoundecanoic acid (MUA) and cysteamine respectively, and then were respectively conjugated with CAP base and CAP succinate via an activating reaction using 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). NSP‐DMAE‐NHS, a new and effective luminescence reagent, was employed to label anti‐CAP antibody (mAb) as a tracer in direct CLIA for CAP detection using a ‘homemade’ luminescent measurement system that was set up with a photomultiplier tube (PMT) and a photon counting unit linked to a computer. The sensitivities and limits of detection (LODs) of the two methods were obtained and compared according to the inhibition curves. The 50% inhibition concentration (IC50) values of the two methods were about 0.044 ng/mL and 0.072 ng/mL respectively and LODs were approximately 0.001 ng/mL and 0.006 ng/mL respectively. To our knowledge, they were much more sensitive than any traditional enzyme‐linked immunosorbent assay (ELISA) ever reported. Moreover, the new luminescence reagent NSP‐DMAE‐NHS is much more sensitive and stable than luminol and its derivatives, contributing to the sensitivity enhancement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号