首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A polarization‐multiplexed, dual‐beam setup is proposed to expand the field of view (FOV) for a swept source optical coherence tomography angiography (OCTA) system. This method used a Wollaston prism to split sample path light into 2 orthogonal‐polarized beams. This allowed 2 beams to shine on the cornea at an angle separation of ~14°, which led to a separation of ~4.2 mm on the retina. A 3‐mm glass plate was inserted into one of the beam paths to set a constant path length difference between the 2 polarized beams so the interferogram from the 2 beams are coded at different frequency bands. The resulting OCTA images from the 2 beams were coded with a depth separation of ~2 mm. A total of 5 × 5 mm2 angiograms from the 2 beams were obtained simultaneously in 4 seconds. The 2 angiograms then were montaged to get a wider FOV of ~5 × 9.2 mm2.   相似文献   

2.
Previous studies for melanin visualization in the retinal pigment epithelium (RPE) have exploited either its absorption properties (using photoacoustic tomography or photothermal optical coherence tomography [OCT]) or its depolarization properties (using polarization sensitive OCT). However, these methods are only suitable when the melanin concentration is sufficiently high. In this work, we present the concept of hyperspectral OCT for melanin visualization in the RPE when the concentration is low. Based on white light OCT, a hyperspectral stack of 27 wavelengths (440‐700 nm) was created in post‐processing for each depth‐resolved image. Owing to the size and shape of the melanin granules in the RPE, the variations in backscattering coefficient as a function of wavelength could be identified—a result which is to be expected from Mie theory. This effect was successfully identified both in eumelanin‐containing phantoms and in vivo in the low‐concentration Brown Norway rat RPE.   相似文献   

3.
Quantification of the diffusion of small molecules and large lipid transporting lipoproteins across arterial tissues could be useful in elucidating the mechanism(s) of atherosclerosis. Optical coherence tomography (OCT) was used to determine the effect of temperature on the rate of diffusion of glucose and low‐density lipoproteins (LDL) in human carotid endarterectomy tissue in vitro. The permeability rate for glucose was calculated to be (3.51 ± 0.27) × 10–5 cm/s (n = 13) at 20 °C, and (3.70 ± 0.44) × 10–5 cm/s (n = 5) at 37 °C; for LDL the rate was (2.42 ± 0.33) × 10–5 cm/s (n = 5) at 20 °C and (4.77 ± 0.48) × 10–5 cm/s (n = 7) at 37 °C, where n is the number of samples. These results demonstrate that temperature does not significantly influence the permeation of small molecules (e.g. glucose), however, raising the temperature does significantly increase the permeation of LDL. These results provide new information about the capacity of an atherogenic lipoprotein to traverse the intimal layer of the artery. These results also demonstrate the potential of OCT for elucidating the dynamics of lipoprotein perfusion across the arterial wall. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light–dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside.  相似文献   

5.
The objective of this study is to verify the anatomic correlate of the second (2nd) outer retina band in optical coherence tomography (OCT), and to demonstrate the potential of using intrinsic optical signal (IOS) imaging for concurrent optoretinography (ORG) of phototransduction activation and energy metabolism in stimulus activated retinal photoreceptors. A custom-designed OCT was employed for depth-resolved IOS imaging in mouse retina activated by a visible light flicker stimulation. The spatiotemporal properties of the IOS changes at the photoreceptor outer segment (OS) and inner segment (IS) were quantitatively evaluated. Rapid IOS change was observed at the OS almost right away, and the IOS at the IS was relatively slow. Comparative analysis indicates that the OS-IOS reflects transient OS deformation caused by the phototransduction activation, and IS-IOS might reflect the energy metabolism caused by mitochondria activation in retinal photoreceptors. The consistency of the distribution of the IS-IOS and the 2nd OCT band supports the IS ellipsoid (ISe), which has abundant mitochondria, as the signal source of the 2nd OCT band of the outer retina.  相似文献   

6.
SECTR is a novel multimodal imaging platform for combined volumetric optical coherence tomography (OCT) and en face spectrally encoded reflectometry (SER). The authors demonstrate three‐dimensional motion‐tracking with millisecond temporal and micron spatial resolution using complementary data from OCT and SER, and preliminary algorithms and results showing real‐time image aiming and multi‐volumetric mosaicking for reconstruction of wide‐field composites. The image shows a noninvasively imaged nine‐field mosaic of in vivo human retina and depth‐resolved visualization of tissue microstructures. Further details can be found in the article by Mohamed T. El‐Haddad, Ivan Bozic, and Yuankai K. Tao ( e201700268 )

  相似文献   


7.
Aims: Quantifying the ex vivo growth of complex multispecies dental biofilms using cross‐polarization 1310‐nm optical coherence tomography (CP‐OCT) system was investigated. Methods and Results: Bacterial microcosms, which were derived from plaque samples of paediatric subjects, were incubated in a biofilm reactor system containing discs of different dental materials for 72 h with daily sucrose pulsing (5×). CP‐OCT analysis of biofilm mass was validated with crystal violet (CV) assays at various growth stages of these complex biofilms. CP‐OCT was able to filter out the back‐reflected signals of water layers in the hydrated biofilm and allowed for direct biofilm quantification. The overall depth‐resolved scattering intensity of the biofilm showed very strong positive correlation with CV assay quantification (Spearman’s ρ = 0·92) during the growth phase of the biofilm. Conclusion: CP‐OCT was able to quantify the mass of the biofilm by measuring the overall depth‐resolved scattering of the biofilm. Significance and Impact of the Study: CP‐OCT has the ability to nondestructively monitor biofilm growth and elucidate the growth characteristics of these microcosms on different dental material compositions.  相似文献   

8.
The purpose of this study was to evaluate early vascular and tomographic changes in the retina of diabetic patients using artificial intelligence (AI). The study included 74 age‐matched normal eyes, 171 diabetic eyes without retinopathy (DWR) eyes and 69 mild non‐proliferative diabetic retinopathy (NPDR) eyes. All patients underwent optical coherence tomography angiography (OCTA) imaging. Tomographic features (thickness and volume) were derived from the OCTA B‐scans. These features were used in AI models. Both OCT and OCTA features showed significant differences between the groups (P < .05). However, the OCTA features indicated early retinal changes in DWR eyes better than OCT (P < .05). In the AI model using both OCT and OCTA features simultaneously, the best area under the curve of 0.91 ± 0.02 was obtained (P < .05). Thus, the combined use of AI, OCT and OCTA significantly improved the early diagnosis of diabetic changes in the retina.  相似文献   

9.
We propose a cross‐scanning optical coherence tomography (CS‐OCT) system to correct eye motion artifacts in OCT angiography images. This system employs a dual‐illumination configuration with two orthogonally polarized beams, each of which simultaneously perform raster scanning in perpendicular direction with each other over the same area. In the reference arm, a polarization delay unit is used to acquire the two orthogonally polarized interferograms with a single photo detector by introducing different optical delay lines. The two cross‐scanned volume data are affected by the same eye motion but in two orthogonal directions. We developed a motion correction algorithm, which removes artifacts in the slow axis of each angiogram using the other and merges them through a nonrigid registration algorithm. In this manner, we obtained a motion‐corrected angiogram within a single volume scanning time without additional eye‐tracking devices.  相似文献   

10.
The formation of biofilms in the endotracheal tubes (ETTs) of intubated patients on mechanical ventilation is associated with a greater risk of ventilator‐associated pneumonia and death. New technologies are needed to detect and monitor ETTs in vivo for the presence of these biofilms. Longitudinal OCT imaging was performed in mechanically ventilated subjects at 24‐hour intervals until extubation to detect the formation and temporal changes of in vivo ETT biofilms. OCT‐derived attenuation coefficient images were used to differentiate between mucus and biofilm. Extubated ETTs were examined with optical and electron microscopy, and all imaging results were correlated with standard‐of‐care clinical test reports. OCT and attenuation coefficient images from four subjects were positive for ETT biofilms and were negative for two subjects. The processed and stained extubated ETTs and clinical reports confirmed the presence/absence of biofilms in all subjects. Our findings confirm that OCT can detect and differentiate between biofilm‐positive and biofilm‐negative groups (P < 10?5). OCT image‐based features may serve as biomarkers for direct in vivo detection of ETT biofilms and help drive investigation of new management strategies to reduce the incidence of VAP.   相似文献   

11.
Retina, the only light sensor in the human eye, is hidden and extremely fragile. Optimized animal models and efficient imaging techniques are very important for the study of retinopathy. In this work, the rapid retinal injury process and the long‐term retinal repair process were in vivo continuously evaluated with a novel imaging technology spectral‐domain optical coherence tomography (SD‐OCT) in a unique animal model zebrafish. Acute retinal injury was constructed on adult zebrafish by needle injection surgery. SD‐OCT imaging was carried out immediately after the mechanical injury. The retinal hemorrhage, which lasted only 5 seconds, could be visualized dynamically by SD‐OCT. The process of blood clearance and retinal repair was also evaluated because SD‐OCT imaging is nondestructive. Both SD‐OCT imaging results and behavioral analyzing results demonstrated that zebrafish retina could be repaired by itself within 15 days, which was confirmed by the results of pathological experiment.  相似文献   

12.
A single‐channel high‐resolution cross‐polarization (CP) optical coherence tomography (OCT) system is presented for multicontrast imaging of human myocardium in one‐shot measurement. The intensity and functional contrasts, including the ratio between the cross‐ and co‐polarization channels as well as the cumulative retardation, are reconstructed from the CP‐OCT readout. By comparing the CP‐OCT results with histological analysis, it is shown that the system can successfully delineate microstructures in the myocardium and differentiate the fibrotic myocardium from normal or ablated myocardium based on the functional contrasts provided by the CP‐OCT system. The feasibility of using A‐line profiles from the 2 orthogonal polarization channels to identify fibrotic myocardium, normal myocardium and ablated lesion is also discussed.   相似文献   

13.
The present study is part of a more extensive investigation dedicated to the study and treatment of age‐dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self‐chosen sleep‐wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen?) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age‐dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra‐ and inter‐individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38±0.19°C vs. 36.17±0.21°C) and circadian amplitude (0.33±0.01°C vs. 0.26±0.01°C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19±1.66 vs. 16.93±3.08 h). However, the inter‐individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter‐daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1°C and the amplitude increased to 0.34±0.01°C, a similar value to that found in young adults. This was probably due to the increase of the inter‐daily rhythm stability. The mean acrophase did not change (16.93 vs. 16.75 h), although the inter‐individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age‐dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep‐improving effects.  相似文献   

14.
As data acquisition for retinal imaging with optical coherence tomography (OCT) becomes faster, efficient collection of photons becomes more important to maintain image quality. One approach is to use a larger aperture at the eye's pupil to collect more photons that have been reflected from the retina. A 2.8‐mm beam diameter system with only seven reflecting surfaces was developed for low‐loss retinal imaging. The larger beam size requires defocus and astigmatism correction, which was done in a closed loop adaptive optics method using a Shack‐Hartmann wavefront sensor and a deformable mirror (DM) with 140 actuators and a ±2.75 μm stroke. This DM facilitates defocus correction ranging from approximately ?3 D to +3 D. Comparing the new system with a standard 1.2‐mm system on a model eye, a signal‐to‐noise gain of 4.5 dB and a 2.3 times smaller speckle size were measured. Measurements on the retinas of five subjects showed even better results, with increases in dynamic range up to 13 dB. Note that the new sample arm only occupies 30 cm × 60 cm, which makes it highly suitable for imaging in a clinical environment. Figure: B‐scan images obtained over a width of 8 deg from the right eye of a 31‐year‐old Caucasian male. While the left side was imaged with a standard 1.2‐mm OCT system, the right side was imaged with the 2.8‐mm system. Both images were collected with the same integration time and incident power, after correction of aberrations. Using the dynamic range within the images, which is determined by comparing the highest pixel value to the noise floor, a difference in dynamic range of 10.8 dB was measured between the two systems.   相似文献   

15.
A full quantitative evaluation of the depolarization of light may serve to assess concentrations of depolarizing particles in the retinal pigment epithelium and to investigate their role in retinal diseases in the human eye. Optical coherence tomography and optical frequency domain imaging use spatial incoherent averaging to compute depolarization. Depolarization depends on accurate measurements of the polarization states at the receiver but also on the polarization state incident upon and within the tissue. Neglecting this dependence can result in artifacts and renders depolarization measurements vulnerable to birefringence in the system and in the sample. In this work, we discuss the challenges associated with using a single input polarization state and traditional depolarization metrics such as the degree‐of‐polarization and depolarization power. We demonstrate quantitative depolarization measurements based on Jones vector synthesis and polar decomposition using fiber‐based polarization‐sensitive optical frequency domain imaging of the retinal pigment epithelium in a human eye.   相似文献   

16.
We report the measurement of polarization parameters (linear retardance, diattenuation and depolarization) of normal and malignant tissue from human oral cavity and breast over the spectral range 390 nm to 550 nm. These parameters were determined using the 3 × 3 Mueller matrix, the elements of which could be determined using linear polarization measurements only. The significant differences observed in the polarization parameters of the normal and malignant tissues appear to arise because of the changes in the collagen matrix in the two tissue types. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A compact high‐speed full‐field optical coherence microscope has been developed for high‐resolution in vivo imaging of biological tissues. The interferometer, in the Linnik configuration, has a size of 11 × 11 × 5 cm3 and a weight of 210 g. Full‐field illumination with low‐coherence light is achieved with a high‐brightness broadband light‐emitting diode. High‐speed full‐field detection is achieved by using part of the image sensor of a high‐dynamic range CMOS camera. En face tomographic images are acquired at a rate of 50 Hz, with an integration time of 0.9 ms. The image spatial resolution is 0.9 μm × 1.2 μm (axial × transverse), over a field of view of 245 × 245 μm2. Images of human skin, revealing in‐depth cellular‐level structures, were obtained in vivo and in real‐time without the need for stabilization of the subject. The system can image larger fields, up to 1 × 1 mm2, but at a reduced depth.   相似文献   

18.
This study presents 1 use of optical coherence tomography (OCT) angiography technique to examine neurovascular coupling effect. Repeated B‐scans OCT recording is performed on the rat somatosensory cortex with cranial window preparation while its contralateral forepaw is electrically stimulated to activate the neurons in rest. We use an intensity‐based Doppler variance (IBDV) algorithm mapped cerebral blood vessels in the cortex, and the temporal alteration in blood perfusion during neurovascular activation is analyzed using the proposed IBDV quantitative parameters. By using principal component analysis‐based Fuzzy C Means clustering method, the stimulus‐evoked vasomotion patterns were classified into 3 categories. We found that the response time of small vessels (resting diameter 14.9 ±6.6 μm), middle vessels (resting diameter 21.1 ±7.9 μm) and large vessels (resting diameter 50.7 ±6.5 μm) to achieve 5% change of vascular dilation after stimulation was 1.5, 2 and 5.5 seconds, respectively. Approximately 5% peak change of relative blood flow (RBF) in both small and middle vessels was observed. The large vessels react slowly and their responses nearly 4 seconds delayed, but no significant change in RBF of the large vessels was seen.   相似文献   

19.
The purpose of this study was to evaluate thermal and near‐infrared (NIR) reflectance imaging methods for the assessment of the activity of root caries lesions. In addition, changes in the lesion structure were monitored with polarization sensitive optical coherence tomography (PS‐OCT). Artificial bovine and natural root caries lesions were imaged with PS‐OCT, and their dehydration rate was measured with thermal and NIR cameras. The lesion activity of the natural root caries samples was also assessed by two clinicians by conventional means according to ICDAS II guidelines. The thickness of the highly mineralized transparent surface layer measured using PS‐OCT increased and the area enclosed by the time‐temperature curve, ΔQ, measured with thermal imaging decreased significantly with longer periods of remineralization in simulated dentin lesions, but the NIR reflectance intensity differences, ΔI, failed to show any significant relationship with the degree of remineralization. The PS‐OCT algorithm for the automated assessment of remineralization successfully detected the highly mineralized surface layer on both natural and simulated lesions. Thermal imaging provided the most accurate diagnosis of root caries lesion activity. These results demonstrate that thermal imaging and PS‐OCT may be ideally suited for the nondestructive root caries lesion activity during a clinical examination.

  相似文献   


20.
A novel machine‐learning method to distinguish between tumor and normal tissue in optical coherence tomography (OCT) has been developed. Pre‐clinical murine ear model implanted with mouse colon carcinoma CT‐26 was used. Structural‐image‐based feature sets were defined for each pixel and machine learning classifiers were trained using “ground truth” OCT images manually segmented by comparison with histology. The accuracy of the OCT tumor segmentation method was then quantified by comparing with fluorescence imaging of tumors expressing genetically encoded fluorescent protein KillerRed that clearly delineates tumor borders. Because the resultant 3D tumor/normal structural maps are inherently co‐registered with OCT derived maps of tissue microvasculature, the latter can be color coded as belonging to either tumor or normal tissue. Applications to radiomics‐based multimodal OCT analysis are envisioned.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号