首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internalization kinetics and intracellular spatial distribution of functionalized diatomite nanoparticles in human lung epidermoid carcinoma cell line have been investigated by confocal fluorescence and Raman microscopy. In this context, Raman imaging due to its non‐destructive, chemically selective and label‐free working principle provides evidence that the nanovectors are internalized and co‐localize with lipid environments, suggesting an endocytic internalisation route. Nanoparticle uptakes and intracellular persistence are observed up to 72 hours, without damage to cell viability or morphology. Further details can be found in the article by Stefano Managò et al. ( e201700207 )

  相似文献   


2.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

3.
Topically applied active cosmetic ingredients (ACI) or active pharmaceutical ingredients (API) efficacy is directly related to their efficiency of penetration in the skin. In vitro reconstructed human epidermis surrogate models offer in vivo like skin samples for transdermal studies. Using Delipidol®, an ACI currently used in the cosmetics industry, the capabilities to deliver accurate distribution maps and penetration profiles of this molecule by means of confocal Raman spectroscopic imaging have been demonstrated. Using a non‐negative constrained least squares (NCLS) approach, contribution of specific molecules can be estimated at each point of spectral maps in order to deliver semi‐quantitative heat maps representing the ACI levels in the different skin layers. The concentration profiles obtained are approximately single exponential for all 3 time points evaluated, with a consistent decay constant, which is independent of the sublayer structure. Notably, however, there is no significant penetration into the lower basal layers until a critical concentration is built up, after 3 hours. Combination of Raman confocal imaging with spectral unmixing methods such as NCLS is demonstrated to be a relevant approach for in vitro biological evaluation of cosmetic and pharmaceutical active ingredients and could easily be implemented as a screening tool for industrial use.   相似文献   

4.
Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air‐blood barrier formation. Here, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI‐like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three‐dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label‐free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.   相似文献   

5.
A novel hyperspectral confocal microscopy method to separate different cell populations in a co‐culture model is presented here. The described methodological and instrumental approach allows discrimination of different cell types using a non‐invasive, label free method with good accuracy with a single cell resolution. In particular, melanoma cells are discriminated from HaCaT cells by hyperspectral confocal imaging, principal component analysis and optical frequencies signing, as confirmed by fluorescence labelling cross check. The identification seems to be quite robust to be insensitive to the cellular shape within the studied samples, enabling to separate cells according to their cytotype down to a single cell sensitivity.

Set of hyperspectral images of melanoma‐keratinocytes co‐culture model (left), score plot of principal component analysis and spectral analysis of principal components coefficients (center), label‐free spectral identification of cell populations (right).  相似文献   


6.
Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub‐organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live‐cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid‐based phenotypes.  相似文献   

7.
The ability to monitor the activation state of T‐cells during immunotherapy is of great importance. Although specific activation markers do exist, their abundance and complicated regulation cannot definitely define the activation state of the cells. Previous studies have shown that Third Harmonic Generation (THG) imaging could distinguish between activated versus resting microglia and healthy versus cancerous cells, mainly based on their lipid‐body profiles. In the present study, mitogen or antigen‐stimulated T‐cells were subjected to THG imaging microscopy. Qualitative and quantitative analysis showed statistically significant increase of THG mean area and intensity in activated versus resting T‐cells. The connection of THG imaging to chemical information was achieved using Raman spectroscopy, which showed significant differences between the activation processes and controls, correlating of THG signal area with cholesterol and lipid compounds, but not with triglycerides. The obtained results suggested a potential employment of nonlinear microscopy in evaluating of T‐cell activation, which is expected to be largely appreciated in the clinical practice.   相似文献   

8.
CdTe quantum dots (QDs) are widely used in bio‐applications due to their size and highly efficient optical properties. However internalization mechanisms thereof for the variety of freshly extracted, not cultivated human cells and their specific molecular interactions remains an open topic for discussion. In this study, we assess the internalization mechanism of CdTe quantum dots (3.3 nm) capped with thioglycolic acid using non cultivated oral epithelial cells obtained from healthy donors. Naked gold nanoparticles (40 nm) were successfully used as nanosensors for surface‐enhanced Raman spectroscopy to efficiently identify characteristic Raman peaks, providing new evidence indicating that the first interactions of these QDs with epithelial cells occurred preferentially with aromatic rings and amine groups of amino acid residues and glycans from trans‐membrane proteins and cytoskeleton. Using an integrative combination of advanced imaging techniques, including ultra‐high resolution SEM, high resolution STEM coupled with EDX spectroscopy together with the results obtained by Raman spectroscopy, it was determined that thioglycolic acid capped CdTe QDs are efficiently internalized into freshly extracted oral epithelial cells only by facilitated diffusion, distributed into cytoplasm and even within the cell nucleus in three minutes.

  相似文献   


9.
A magnetic graphene quantum dot (MGQD) nanoparticle, synthesized by hydrothermally reducing and cutting graphene oxide‐iron oxide sheet, was demonstrated to possess the capabilities of simultaneous confocal fluorescence and magnetomotive optical coherence tomography (MMOCT) imaging. This MGQD shows low toxicity, significant tunable blue fluorescence and superparamagnetism, which can thus be used as a dual‐modality contrast agent for confocal fluorescence microscopy (CFM) and MMOCT. The feasibility of applying MGQD as a tracer of cells is shown by imaging and visualizing MGQD labeled cells using CFM and our in‐house MMOCT. Since MMOCT and CFM can offer anatomical structure and intracellular details, respectively, the MGQD for cell tracking could provide a more comprehensive diagnosis.   相似文献   

10.
Spontaneous Raman scattering microspectroscopy, second harmonic generation (SHG) and 2‐photon excited fluorescence (2PF) were used in combination to characterize the morphology together with the chemical composition of the cell wall in native plant tissues. As the data obtained with unstained sections of Sorghum bicolor root and leaf tissues illustrate, nonresonant as well as pre‐resonant Raman microscopy in combination with hyperspectral analysis reveals details about the distribution and composition of the major cell wall constituents. Multivariate analysis of the Raman data allows separation of different tissue regions, specifically the endodermis, xylem and lumen. The orientation of cellulose microfibrils is obtained from polarization‐resolved SHG signals. Furthermore, 2‐photon autofluorescence images can be used to image lignification. The combined compositional, morphological and orientational information in the proposed coupling of SHG, Raman imaging and 2PF presents an extension of existing vibrational microspectroscopic imaging and multiphoton microscopic approaches not only for plant tissues.   相似文献   

11.
Barrett's oesophagus is a condition characterized by a change in the lining of the oesophagus that markedly increases the risk of adenocarcinoma. We demonstrate the first site‐matched application of Brillouin microscopy, Raman microscopy and FTIR micro‐spectroscopic imaging to ex‐vivo epithelial tissue – Barrett's oesophagus. The mechanical and chemical characters of the epithelium were assessed in histological sections from a patient subjected to endoscopic oesophageal biopsy. Previous studies have shown that both these properties change within the oesophageal wall, owing to the presence of distinct cellular and extracellular constituents which are putatively affected by oesophageal cancer. Brillouin microscopy enables maps of elasticity of the epithelium to be obtained, whilst Raman and FTIR imaging provide ’chemical images' without the need for labelling or staining. This site‐matched approach provides a valuable platform for investigating the structure, biomechanics and composition of complex heterogeneous systems. A combined Brillouin‐Raman device has potential for in‐vivo diagnosis of pathology.

First application of site‐matched micro Brillouin, Raman and FTIR spectroscopic imaging to epithelial tissue in Barrett's oesophagus  相似文献   


12.
Confocal microscopy is an indispensable tool for biological imaging due to its high resolution and optical sectioning capability. However, its slow imaging speed and severe photobleaching have largely prevented further applications. Here, we present dual inclined beam line‐scanning (LS) confocal microscopy. The reduced excitation intensity of our imaging method enabled a 2‐fold longer observation time of fluorescence compared to traditional LS microscopy while maintaining a good sectioning capability and single‐molecule sensitivity. We characterized the performance of our method and applied it to subcellular imaging and three‐dimensional single‐molecule RNA imaging in mammalian cells.   相似文献   

13.
The prototypic poxvirus, vaccinia virus (VACV), occurs in two infectious forms, mature virions (MVs) and extracellular virions (EVs). Both enter HeLa cells by inducing macropinocytic uptake. Using confocal microscopy, live‐cell imaging, targeted RNAi screening and perturbants of endosome maturation, we analyzed the properties and maturation pathway of the macropinocytic vacuoles containing VACV MVs in HeLa cells. The vacuoles first acquired markers of early endosomes [Rab5, early endosome antigen 1 and phosphatidylinositol(3)P]. Prior to release of virus cores into the cytoplasm, they contained markers of late endosomes and lysosomes (Rab7a, lysosome‐associated membrane protein 1 and sorting nexin 3). RNAi screening of endocytic cell factors emphasized the importance of late compartments for VACV infection. Follow‐up perturbation analysis showed that infection required Rab7a and PIKfyve, confirming that VACV is a late‐penetrating virus dependent on macropinosome maturation. VACV EV infection was inhibited by depletion of many of the same factors, indicating that both infectious particle forms share the need for late vacuolar conditions for penetration.   相似文献   

14.
A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM‐SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2‐mm deep into strong scattering media (lard) to acquire up to a 14‐fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6‐mm thick brain tissue layer. This depth resolved label‐free multimodal approach is a powerful route to analyze complex biomedical samples.   相似文献   

15.
The identification of individual eukaryotic and prokaryotic cells is the backbone of clinical pathology and provides crucial information about the genesis and progression of a disease. While most commonly fluorescent‐label based methods are applied, label‐free methods, such as Raman spectroscopy, are elegant alternatives. A major disadvantage of Raman spectroscopy is the low signal yield resulting in long acquisition times, making it impractical for high‐throughput clinical analysis. As a rule, Raman‐based cell identification relies on high‐resolution Raman spectra. This comes at a cost of detected Raman photons. In this letter we show that while the proper biochemical characterization of cells requires high‐resolution Raman spectra, the proper classification of cells does not. By varying the slit‐width between 50 µm and 500 µm it is possible to show that detected Raman signal from eukaryotic cells increased up to seven‐fold. Raman‐based cell classification was performed on three cancer cell lines: Jurkat, MiaPaca2, and Capan1, at three different resolutions 8 cm–1, 24 cm–1, and 48 cm–1. Moreover, we have simulated the resolution decrease due to low‐diffraction gratings by binning neighboring pixels together. In both cases the cells were well classifiable using support vectors machine (SVM).

For anyone working in the field of Raman spectroscopy this picture of Sir C.V. Raman is recognizable, even with reduced spatial resolution. Raman spectra of eukaryotic cells can also be recognized even with six fold reduced spectral resolution.  相似文献   


16.
Nonresonant confocal Raman imaging has been used to map the DNA and the protein distributions in individual single human cells. The images are obtained on an improved homebuilt confocal Raman microscope. After statistical analysis, using singular value decomposition, the Raman images are reconstructed from the spectra covering the fingerprint region. The data are obtained at a step interval of approximately 250 nm and cover a field from 8- to 15- micro m square in size. Dwell times at each pixel are between 0.5 and 2 s, depending on the nature and the state of the cell under investigation. High quality nonresonant Raman images can only be obtained under these conditions using continuous wave high laser powers between 60 and 120 mW. We will present evidence that these laser powers can still safely be used to recover the chemical distributions in fixed cells. The developed Raman imaging method is used to image directly, i.e., without prior labeling, the nucleotide condensation and the protein distribution in the so-called nuclear fragments of apoptotic HeLa cells. In the control (nonapoptotic) HeLa cells, we show, for the first time by Raman microspectroscopy, the presence of the RNA in a cell nucleus.  相似文献   

17.
Traditional approaches to characterize stem cell differentiation are time‐consuming, lengthy and invasive. Here, Raman microspectroscopy (RM) and atomic force microscopy (AFM) – both considered as non‐invasive techniques – are applied to detect the biochemical and biophysical properties of trophoblast derived stem‐like cells incubated up to 10 days under conditions designed to induce differentiation. Significant biochemical and biophysical differences between control cells and differentiated cells were observed. Quantitative real time PCR was also applied to analyze gene expression. The relationship between cell differentiation and associated cellular biochemical and biomechanical changes were discussed.

Monitoring trophoblast cells differentiation  相似文献   


18.
19.
The migration of immune cells is crucial to the immune response. Visualization of these processes has previously been limited because of the imaging depth. We developed a deep‐penetrating, sensitive and high‐resolution method to use fast photoacoustic tomography (PAT) to image the dynamic changes of T cells in lymph node and diseases at new depth (up to 9.5 mm). T cells labeled with NIR‐797‐isothiocyanate, an excellent near‐infrared photoacoustic and fluorescent agent, were intravenously injected to the mice. We used fluorescence imaging to determine the location of T cells roughly and photoacoustic imaging is used to observe T‐cell responses in diseased sites deeply and carefully. The dynamic changes of T cells in lymph node, acute disease (bacterial infection) and chronic disease (tumor) were observed noninvasively by photoacoustic and fluorescence imaging at different time points. T cells accumulated gradually and reached a maximum at 4 hours and declined afterwards in lymph node and bacterial infection site. At tumor model, T cells immigrated to the tumor with a maximum at 12 hours. Our study can not only provide a new observing method for immune activities tracking, but also enable continuous monitoring for therapeutic interventions.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号