This work presents recent developments in spatially offset and transmission Raman spectroscopy for noninvasive detection and depth prediction of a single SERS inclusion located deep inside ex vivo biological tissues. The concept exploits the differential attenuation of Raman bands brought about by their different absorption due to tissue constituents enabling to predict the inclusion depth. Four different calibration models are tested and evaluated to predict the depth of surface enhanced Raman scattering labelled nanoparticles, within an up to 40 mm slab of porcine tissue. An external measurement carried out in transmission mode, with a noninvasively built model on the analysed sample, is shown to be insensitive to variations of the overall thickness of the tissue yielding an average root‐mean‐square error of prediction of 6.7%. The results pave the way for future noninvasive deep Raman spectroscopy in vivo enabling to localise cancer biomarkers for an early diagnosis of multiple diseases. 相似文献
We have reported two methods to analyze glucose in the interstitial fluid of skin based on mid‐infrared excitation with a tunable quantum cascade laser and photoacoustic or photothermal detection. These methods were evaluated for optimum skin locations to obtain reproducible glucose information. The lower part of the arm, the hypothenar, the tips of the index finger and the thumb were tested. The thumb appears to be the optimal skin location, followed by the index finger. Basic requirements for an optimum site are good capillary blood perfusion, low Stratum corneum thickness and the absence of fat layers. To obtain a correlation on such a site, spectra were recorded on volunteers continuously after blood glucose manipulation. However, continuous measurements on an in vivo sample such as the skin have to cope with physiological alterations such as the formation of sweat. We have used both detection schemes to investigate the acid mantle reformation after washing during time scales similar to continuous measurements for calibration spectra. We found that reconstitution of the acid mantle of skin may be seen in less than one hour. Precleaning of the measurement site may thus be useful for intermittent, but not for long term continuous measurements.
The surface enhanced Raman spectroscopy (SERS) spectrum of caffeine is recorded on a silver colloid at different pH values. It is discussed on the basis of the SERS \"surface selection rules\" in order to characterize its vibrational behavior on such a biological artificial model. To improve the previous assignments in the Raman spectrum and for a reliable, detailed analysis of SERS spectra, density functional theory calculations (structural parameters, harmonic vibrational wavenumbers, total electron density, and natural population analysis of the molecule) are performed for the anhydrous form of caffeine and the results are discussed. The predicted geometry and vibrational Raman spectra are in good agreement with the experimental data. The flat orientation of the mainly chemisorbed caffeine attached through the pi electrons and the lone pair of nonmethylated N atoms of the imidazole ring are proposed to occur at neutral and basic pH values. At acid pH values caffeine is probably adsorbed on the Ag surface through one or both oxygen atoms, more probably through the O atom of the conjugated carbonyl group with an end-on orientation. However, the changes in the overall SERS spectral pattern seem to indicate the electromagnetic mechanism as being the dominant one. 相似文献
The Raman spectra in the low 5–200 cm−1 frequency region of metabolically activeE. coli cells have been analyzed to determine whether they are indicators of a possible in vivo underlying order by applying standard concepts derived from the Raman spectroscopy of crystalline systems with varying degrees of order. The analysis suggests that in-vivo space-time ordered structures involving amino acids associated with DNA exist since the low frequency lines of metabolically active cells can be assigned to lines seen in the spectra of crystals of given amino acids known to associated with DNA early in the lifetime of a cell. 相似文献
Reinterpretation of the Wartburg effect leads to understanding aerobic glycolysis as a process that provides considerable amount of molecular precursors for the production of lipids, nucleotides and amino acids that are necessary for continuous growth and rapid proliferation characteristic for cancer cells.Human papilloma virus (HPV) is a number one cause of cervical carcinoma with 99% of the cervical cancer patients being HPV positive. This tight link between HPV and cancer raises the question if and how HPV impact cells to reprogram their metabolism? Focusing on early phase proteins E1, E2, E5, E6 and E7 we demonstrate that HPV activates plethora of metabolic pathways and directly influences enzymes of the glycolysis pathway to promote the Warburg effect by increasing glucose uptake, activating glycolysis and pentose phosphate pathway, increasing the level of lactate dehydrogenase A synthesis and inhibiting β-oxidation. Our considerations lead to conclusion that HPV is substantially involved in metabolic cell reprogramming toward neoplastic phenotype and its metabolic activity is the fundamental reason of its oncogenicity. 相似文献
The ultraviolet resonance Raman (UV RR) spectra of functional ATP/membrane-bound Na+K+-ATPase complexes have been obtained. The substrate binding in the enzyme active site has been shown to be accompanied with significant changes in the electronic vibrational structure of the adenine ring. From the spectral analysis of ATP, 8-Br-ATP and 6-NHMe-adenine at various pH values the conclusion was made that N1 and the NH2, group and, probably, N7 of the substrate adenine part, interact with the protein surroundings via hydrogen bonds. 相似文献
The Raman spectroscopic lines of liquid cultures ofRhizobium japonicum have been compared with electron microscopic examinations and growth measurements of these cells. The results showed that the significant Raman lines are related to the reproduction activities of the procaryotic cells. 相似文献
A set of arabinoxylan samples differing in their arabinose composition and various samples of arabino-xylo-oligosaccharide samples were analysed by Raman spectroscopy. Specific signatures for arabinose substitution were found in several spectral regions, that is, 400-600, 800-950 and 1030-1100 cm(-1). A linear relationship was observed between the peak ratio 855/895 cm(-1) of the second derivative spectra and the A/X ratio determined by chemical analysis. Moreover, spectral changes were observed in the 400-600 cm(-1) region assigned to the coupled vibrations mode in the skeleton: while the intensity of the band at 570 cm(-1) increased with the degree of substitution, that at 494 cm(-1) decreased. Similarly, a linear relationship was observed between the peak intensity ratio 570/494 cm(-1) calculated on the second derivative spectra and the composition data. Analysis of Raman spectra of arabino-xylo-oligosaccharides allowed to identify specific spectral features of disubstitution. 相似文献
The retrogradation of untreated wild-type starches (potato, maize, and wheat), waxy maize starches, and one pregelatinized, modified amylose-rich starch was investigated continuously using Raman spectroscopy. The method detects conformational changes due to the multi-stage retrogradation, the rate of which differs between the starches. The pregelatinized, modified amylose-rich starch shows all stages of retrogradation in the course of its Raman spectra. In comparison to amylose, the retrogradation of amylopectin is faster at the beginning of the measurements and slower in the later stages. The untreated starches can be ranked in the order of their rate of retrogradation as follows: potato>maize>wheat. 相似文献
Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data. 相似文献
The tremendous enhancement factors that surface‐enhanced Raman scattering (SERS) possesses coupled with the flexibility of photonic crystal fibers (PCFs) pave the way to a new generation of ultrasensitive biosensors. Thanks to the unique structure of PCFs, which allows direct incorporation of an analyte into the axially aligned air channels, interaction between the analyte and excitation light could be increased many folds leading to flexible, reliable and sensitive probes that can be used in preclinical or clinical biosensing. SERS‐active PCF probes provide unique opportunity to develop an opto‐fluidic liquid biopsy needle sensor that enables one‐step integrated sample collection and testing for disease diagnosis. Specificity being a key parameter to biosensors, the PCF inside the biopsy needle could be functionalized with targeting moieties to detect specific biomarkers. In this review article, we present some of the most promising recent biosensors based on PCFs including hollow‐core PCFs, suspended‐core PCFs and side‐channel PCFs. We provide a wide range of applications of such platform using Raman spectroscopy, label free SERS or labeled SERS detection and analyze some of the main challenges to be addressed for translating it to a clinically viable next generation sensitive biopsy needle sensing probe. 相似文献
Raman spectroscopy using fiber optic probe combines non‐contacted and label‐free molecular fingerprinting with high mechanical flexibility for biomedical, clinical and industrial applications. Inherently, fiber optic Raman probes provide information from a single point only, and the acquisition of images is not straightforward. For many applications, it is highly crucial to determine the molecular distribution and provide imaging information of the sample. Here, we propose an approach for Raman imaging using a handheld fiber optic probe, which is built around computer vision–based assessment of positional information and simultaneous acquisition of spectroscopic information. By combining this implementation with real‐time data processing and analysis, it is possible to create not only fiber‐based Raman imaging but also an augmented chemical reality image of the molecular distribution of the sample surface in real‐time. We experimentally demonstrated that using our approach, it is possible to determine and to distinguish borders of different bimolecular compounds in a short time. Because the method can be transferred to other optical probes and other spectroscopic techniques, it is expected that the implementation will have a large impact for clinical, biomedical and industrial applications. 相似文献