首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical coherence tomography (OCT) is an established imaging technology for in vivo skin investigation. Topical application of gold nanoshells (GNS) provides contrast enhancement in OCT by generating a strong hyperreflective signal from hair follicles and sweat glands, which are the natural skin openings. This study explores the utility of 150 nm diameter GNS as contrast agent for OCT imaging. GNS was massaged into skin and examined in four skin areas of 11 healthy volunteers. A commercial OCT system and a prototype with 3 μm resolution (UHR‐OCT) were employed to detect potential benefits of increased resolution and variability in intensity generated by the GNS. In both OCT‐systems GNS enhanced contrast from hair follicles and sweat ducts. Highest average penetration depth of GNS was in armpit 0.64 mm ± SD 0.17, maximum penetration depth was 1.20 mm in hair follicles and 15 to 40 μm in sweat ducts. Pixel intensity generated from GNS in hair follicles was significantly higher in UHR‐OCT images (P = .002) and epidermal thickness significantly lower 0.14 vs 0.16 mm (P = .027). This study suggests that GNSs are interesting candidates for increasing sensitivity in OCT diagnosis of hair and sweat gland disorders and demonstrates that choice of OCT systems influences results.   相似文献   

2.
Corneal transplantation by full‐thickness penetrating keratoplasty with human donor tissue is a widely accepted treatment for damaged or diseased corneas. Although corneal transplantation has a high success rate, a shortage of high‐quality donor tissue is a considerable limitation. Therefore, bioengineered corneas could be an effective solution for this limitation, and a decellularized extracellular matrix comprises a promising scaffold for their fabrication. In this study, three‐dimensional bioprinted decellularized collagen sheets were implanted into the stromal layer of the cornea of five rabbits. We performed in vivo noninvasive monitoring of the rabbit corneas using swept‐source optical coherence tomography (OCT) after implanting the collagen sheets. Anterior segment OCT images and averaged amplitude‐scans were acquired biweekly to monitor corneal thickness after implantation for 1 month. The averaged cornea thickness in the control images was 430.3 ± 5.9 μm, while the averaged thickness after corneal implantation was 598.5 ± 11.8 μm and 564.5 ± 12.5 μm at 2 and 4 weeks, respectively. The corneal thickness reduction of 34 μm confirmed the biocompatibility through the image analysis of the depth‐intensity profile base. Moreover, hematoxylin and eosin staining supported the biocompatibility evaluation of the bioprinted decellularized collagen sheet implantation. Hence, the developed bioprinted decellularized collagen sheets could become an alternative solution to human corneal donor tissue, and the proposed image analysis procedure could be beneficial to confirm the success of the surgery.   相似文献   

3.
Optical coherence tomography (OCT) angiography can noninvasively map microvascular networks and quantify blood flow in a cerebral cortex with a resolution of 1 to 10 μm and a penetration depth of 2 to 3 mm incorporating OCT signals and angiography algorithms. Different angiography algorithms have been developed in recent years; however, the performance of the algorithms has not been assessed quantitatively for neuroimaging applications. In this paper, we developed four metrics including vascular connectivity, contrast‐to‐noise ratio, signal‐to‐noise ratio and processing time to quantitatively assess the performance of OCT angiography algorithms in image quality and computation speed. After the imaging of a rat cortex using an OCT system, the cerebral microvascular networks were visualized by seven algorithms, and the performance of the algorithms was quantified and compared. Quantitative performance assessment of the algorithms can provide suggestions for the selection of appropriate OCT angiography algorithms in neuroimaging.  相似文献   

4.
Projection artifacts (PAs) affect the quantification of vascular parameters in the deep layer optical coherence tomography (OCT) angiography image. This study eliminated PA and quantified its effect on imaging. 53 eyes (30 subjects) of normal Indian subjects and 113 eyes (92 patients) of type 2 diabetes mellitus with retinopathy (DR) underwent imaging with a scan area of 3 mm × 3 mm. In this study, a normalized cross‐correlation between superficial and deep layer was used to remove PA in deep layer. Local fractal analysis was done to compute vascular parameters such as foveal avascular zone area (mm2), vessel density (%), spacing between large vessels (%) and spacing between small vessels (%). Before PA removal, vessel density for mild nonproliferative (NPDR), moderate NPDR, severe NPDR and proliferative DR were 42.56 ±1.69%, 40.69 ±0.72%, 37.34 ±0.85% and 35.61 ±1.26%, respectively. After artifact removal, vessel density was 28.9 ±1.22%, 29.9 ±0.56%, 26.19 ±0.59% and 24.02 ±0.94%, respectively. All the vascular parameters were statistically significant (P <.001) between normal and disease eyes, irrespective of superficial and deep retinal layers. Parafoveal sectoral analyses showed that temporal zone had the lowest vessel density and may undergo DR‐related changes first. The current approach enabled rapid and accurate quantitative interpretation of DR eyes, without PA.   相似文献   

5.
A preliminary clinical trial using state‐of‐the‐art multiphoton tomography (MPT) and optical coherence tomography (OCT) for three‐dimensional (3D) multimodal in vivo imaging of normal skin, nevi, scars and pathologic skin lesions has been conducted. MPT enabled visualization of sub‐cellular details with axial and transverse resolutions of <2 μm and <0.5 μm, respectively, from a volume of 0.35 × 0.35 × 0.2 mm3 at a frame rate of 0.14 Hz (512 × 512 pixels). State‐of‐the‐art OCT, operating at a center wavelength of 1300 nm, was capable of acquiring 3D images depicting the layered architecture of skin with axial and transverse resolutions ~8 μm and ~20 μm, respectively, from a volume of 7 × 3.5 × 1.5 mm3 at a frame rate of 46 Hz (1024 × 1024 pixels). This study demonstrates the clinical diagnostic potential of MPT/OCT for pre‐screening relatively large areas of skin using 3D OCT to identify suspicious regions at microscopic level and subsequently using high resolution MPT to obtain zoomed in, sub‐cellular level information of the respective regions (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Mechanical perturbations can release ATP, which is broken down to adenosine. In this work, we used carbon‐fiber microelectrodes and fast‐scan cyclic voltammetry to measure mechanically stimulated adenosine in the brain by lowering the electrode 50 μm. Mechanical stimulation evoked adenosine in vivo (average: 3.3 ± 0.6 μM) and in brain slices (average: 0.8 ± 0.1 μM) in the prefrontal cortex. The release was transient, lasting 18 ± 2 s. Lowering a 15‐μm‐diameter glass pipette near the carbon‐fiber microelectrode produced similar results as lowering the actual microelectrode. However, applying a small puff of artificial cerebral spinal fluid was not sufficient to evoke adenosine. Multiple stimulations within a 50‐μm region of a slice did not significantly change over time or damage cells. Chelating calcium with EDTA or blocking sodium channels with tetrodotoxin significantly decreased mechanically evoked adenosine, signifying that the release is activity dependent. An alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor antagonist, 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, did not affect mechanically stimulated adenosine; however, the nucleoside triphosphate diphosphohydrolase 1,2 and 3 (NTDPase) inhibitor POM‐1 significantly reduced adenosine so a portion of adenosine is dependent on extracellular ATP metabolism. Thus, mechanical perturbations from inserting a probe in the brain cause rapid, transient adenosine signaling which might be neuroprotective.

  相似文献   


7.
Radiation therapy for patients with non‐small‐cell lung cancer is hampered by acute radiation‐induced toxicity in the esophagus. This study aims to validate that optical coherence tomography (OCT), a minimally invasive imaging technique with high resolution (~10 μm), is able to visualize and monitor acute radiation‐induced esophageal damage (ARIED) in mice. We compare our findings with histopathology as the gold standard. Irradiated mice receive a single dose of 40 Gy at proximal and distal spots of the esophagus of 10.0 mm in diameter. We scan mice using OCT at two, three, and seven days post‐irradiation. In OCT analysis, we define ARIED as a presence of distorted esophageal layering, change in backscattering signal properties, or change in the esophageal wall thickness. The average esophageal wall thickness is 0.53 mm larger on OCT when ARIED is present based on histopathology. The overall sensitivity and specificity of OCT to detect ARIED compared to histopathology are 94% and 47%, respectively. However, the overall sensitivity of OCT to assess ARIED is 100% seven days post‐irradiation. We validate the capability of OCT to detect ARIED induced by high doses in mice. Nevertheless, clinical studies are required to assess the potential role of OCT to visualize ARIED in humans.   相似文献   

8.
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular‐level structural details of GI mucosa over a large tissue area. In this article, we report a fiber‐optic‐based micro‐optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular‐level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth‐of‐focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal‐end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber‐optic μOCT system is capable of visualizing cellular‐level morphological features. We also demonstrate that time‐lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular‐level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers.   相似文献   

9.
Endoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8‐20 μm. In this paper, we present the first ultrahigh‐resolution tethered OCT capsule operating at 800 nm and offering about 3‐ to 4‐fold improvement of axial resolution (plus enhanced imaging contrast). The capsule uses diffractive optics to manage chromatic aberration over a full ~200 nm spectral bandwidth centering around 830 nm, enabling to achieve super‐achromaticity and an axial resolution of ~2.6 μm in air. The performance of the OCT capsule is demonstrated by volumetric imaging of swine esophagus ex vivo and sheep esophagus in vivo, where fine anatomic structures including the sub‐epithelial layers are clearly identified. The ultrahigh resolution and excellent imaging contrast at 800 nm of the tethered capsule suggest the potential of the technology as an enabling tool for surveillance of early esophageal diseases on awake patients without the need for sedation.   相似文献   

10.
The characteristics of elongation, branching, septation, and nuclear morphology in hyphal tips (of ~400 μm in length) of the mycelial fungus Neurospora crassa isolated from the mycelium and cultivated for several hours have been investigated using intracellular fluorescent markers. The newly formed branches had the following characteristic features: (1) the predefined orientation was conserved, whereas the diameter decreased (from 10–20 to 6.5 ± 0.4 μm), as did the elongation rate (from 24 ± 1 to 6.7 ± 0.5 μm/min); (2) a disturbed branching pattern with abnormally large internodal distances (up to 1471 μm) and developmental arrest of part of the buds of lateral branches; and (3) a conserved septation pattern and a relatively constant length of hyphal segments (68 ± 2 μm). The size of the nucleus-free zone at the tip (5–33 μm) and the distance between the first septum and the growth point (210 ± 15 μm) in the daughter branches of the isolated fragments were almost the same as in hyphae connected to the mycelium, whereas the average distance between the growth point and the first lateral branch (492 ± 127 μm) and the variability of this parameter were higher in the isolated fragments. The morphology of the nuclei and the size of the nucleus-free zone near the growth point did not differ from those reported for normal vegetative hyphae of N. crassa. The experimental model developed may be used for the elucidation of details of molecular genetic mechanisms that underlie the regulation of interactions between the intracellular structures that provide tip growth of the hyphae in N. crassa.  相似文献   

11.
Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering‐optical coherence tomography (DLS‐OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution‐constrained three‐dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS‐OCT to measure both RBC velocity and the shear‐induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear‐induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10?6 mm2. These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion.   相似文献   

12.
A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A‐line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer.   相似文献   

13.
This study presents the first in vivo longitudinal assessment of scar vasculature in ablative fractional laser treatment using optical coherence tomography (OCT). A method based on OCT speckle decorrelation was developed to visualize and quantify the scar vasculature over the treatment period. Through reliable co‐location of the imaging field of view across multiple imaging sessions, and compensation for motion artifact, the study was able to track the same scar tissue over a period of several months, and quantify changes in the vasculature area density. The results show incidences of occlusion of individual vessels 3 days after the first treatment. The subsequent responses ?20 weeks after the initial treatment show differences between immature and mature scars. Image analysis showed a distinct decrease (25 ± 13%, mean ± standard deviation) and increase (19 ± 5%) of vasculature area density for the immature and mature scars, respectively. This study establishes the feasibility of OCT imaging for quantitative longitudinal monitoring of vasculature in scar treatment.

En face optical coherence tomography vasculature images pre‐treatment (top) and ?20 weeks after the first laser treatment (bottom) of a mature burn scar. Arrows mark the same vessel pattern.  相似文献   


14.
One of the interesting strategies for developing the artificial blood vessels is to generate multi-layered scaffolds for mimicking the structure of native blood vessels such as the intima, media, and adventitia. In this study, we prepared dual-layered poly(L-lactide-co-?-caprolactone) (PLCL) scaffolds with micro- and nanofibers as a basic construct of the vessel using electrospinning methods, which was functionalized using a gelatin through acrylic acid (AAc) grafting by γ-ray irradiation. Based on the microfibrous platform (fiber diameter 5 μm), the thickness of the nanofibrous layer (fiber diameter 700 nm) was controlled from 1.1 ± 0.8 to 32.2 ± 1.7 μm, and the mechanical property of the scaffolds was almost maintained despite the increase in thickness of the nanofibrous layer. The successful AAc graft by γ-ray irradiation could allow the gelatin immobilization on the scaffolds. The proliferation of smooth muscle cells (SMC) on the scaffolds toward a microfibrous layer was approximately 1.3-times greater than in the other groups, and the infiltration was significantly increased, presenting a wide cell distribution in the cross-section. In addition, human umbilical vein endothelial cell (HUVEC) adhesion toward nanofibrous layer was well-managed over the entire surface, and the accelerated proliferation was observed on the gelatin-functionalized scaffolds presenting the well-organized gap-junctions. Therefore, our biomimetic dual-layered scaffolds may be the alternative tools for replacing the damaged blood vessels.  相似文献   

15.
Fibromyalgia (FM) is a complex syndrome characterized by chronic widespread pain and a heightened response to pressure. Most medical researches pointed out that FM patients with endothelial dysfunction and arterial stiffness. A continuous‐wave near‐infrared spectroscopy (NIRS) system is used in present study to measure the hemodynamic changes elicited by breath‐holding task in patients with FM. Each patient completed a questionnaire survey including demographics, characteristics of body pain, associated symptoms, headache profiles and Hospital Anxiety and Depression Scale. A total of 27 FM patients and 26 health controls were enrolled. In comparison with healthy controls, patients with FM showed lower maximal and averaged change of oxyhemoglobin concentration in both the left (1.634 ±0.890 and 0.810 ±0.525 μM) and the right (1.576 ±0.897 and 0.811 ±0.601 μM) prefrontal cortex than healthy controls (P < .05 for both sides) during the breath‐holding task. In conclusion, FM is associated with altered cerebrovascular reactivity measured by NIRS and breath‐holding task, which may reflect endothelial dysfunction or arterial stiffness. Oxygenated hemoglobin concentration changes of healthy controls and FM patients.   相似文献   

16.

Background

We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.

Methods

We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).

Results

We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.

Conclusion

We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.  相似文献   

17.
A developed temporal focusing‐based multiphoton excitation microscope (TFMPEM) has a digital micromirror device (DMD) which is adopted not only as a blazed grating for light spatial dispersion but also for patterned illumination simultaneously. Herein, the TFMPEM has been extended to implement spatially modulated illumination at structured frequency and orientation to increase the beam coverage at the back‐focal aperture of the objective lens. The axial excitation confinement (AEC) of TFMPEM can be condensed from 3.0 μm to 1.5 μm for a 50 % improvement. By using the TFMPEM with HiLo technique as two structured illuminations at the same spatial frequency but different orientation, reconstructed biotissue images according to the condensed AEC structured illumination are shown obviously superior in contrast and better scattering suppression. Picture : TPEF images of the eosin‐stained mouse cerebellar cortex by conventional TFMPEM (left), and the TFMPEM with HiLo technique as 1.09 μm?1 spatially modulated illumination at 90° (center) and 0° (right) orientations.

  相似文献   


18.
5-Hydroxytryptamine (5-HT) was originally discovered as a vasoconstrictor. 5-HT lowers blood pressure when administered peripherally to both normotensive and hypertensive male rats. Because the serotonin transporter (SERT) can function bidirectionally, we must consider whether 5-HT can be transported from the bloodstream to the central nervous system (CNS) in facilitating the fall in blood pressure. The blood–brain barrier (BBB) is a highly selective barrier that restricts movement of substances from the bloodstream to the CNS and vice versa, but the rat BBB has not been investigated in terms of SERT expression. This requires us to determine whether the BBB of the rat, the species in which we first observed a fall in blood pressure to infused 5-HT, expresses SERT. We hypothesized that SERT is present in the BBB of the male rat. To test this hypothesis, over 500 blood vessels were sampled from coronal slices of six male rat brains. Immunofluorescence of these coronal slices was used to determine whether SERT and RecA-1 (an endothelial cell marker) colocalized to the BBB. Blood vessels were considered to be capillaries if they were between 1.5 and 23 µm (intraluminal diameter). SERT was identified in the largest pial vessels of the BBB (mean ± SEM = 228.70 ± 18.71 µm, N = 9) and the smallest capillaries (mean ± SEM = 2.75 ± 0.12 µm, N = 369). SERT was not identified in the endothelium of blood vessels ranging from 20 to 135 µm (N = 45). The expression of SERT in the rat BBB means that 5-HT entry into the CNS must be considered a potential mechanism when investigating 5-HT-induced fall in blood pressure.  相似文献   

19.
We demonstrate the use of the near‐infrared attenuation coefficient, measured using optical coherence tomography (OCT), in longitudinal assessment of hypertrophic burn scars undergoing fractional laser treatment. The measurement method incorporates blood vessel detection by speckle decorrelation and masking, and a robust regression estimator to produce 2D en face parametric images of the attenuation coefficient of the dermis. Through reliable co‐location of the field of view across pre‐ and post‐treatment imaging sessions, the study was able to quantify changes in the attenuation coefficient of the dermis over a period of ~20 weeks in seven patients. Minimal variation was observed in the mean attenuation coefficient of normal skin and control (untreated) mature scars, as expected. However, a significant decrease (13 ± 5%, mean ± standard deviation) was observed in the treated mature scars, resulting in a greater distinction from normal skin in response to localized damage from the laser treatment. By contrast, we observed an increase in the mean attenuation coefficient of treated (31 ± 27%) and control (27 ± 20%) immature scars, with numerical values incrementally approaching normal skin as the healing progressed. This pilot study supports conducting a more extensive investigation of OCT attenuation imaging for quantitative longitudinal monitoring of scars.

En face 2D OCT attenuation coefficient map of a treated immature scar derived from the pre‐treatment (top) and the post‐treatment (bottom) scans. (Vasculature (black) is masked out.) The scale bars are 0.5 mm.  相似文献   


20.
The occurrence and development of ischemic stroke are closely related to cerebral blood flow. Real‐time monitoring of cerebral perfusion level is very useful for understanding the mechanisms of the disease. A wide field of view (FOV) is conducive to capturing lesions and observing the progression of the disease. In this paper, we attempt to monitor the whole‐brain microcirculation in middle cerebral artery occlusion (MCAO) rats over time using a wide FOV swept‐source OCT (SS‐OCT) system. A constrained image registration algorithm is used to remove motion artifacts that are prone to occur in a wide FOV angiography. During ischemia, cerebral perfusion levels in the left and right hemispheres, as well as in the whole brain were quantified and compared. Changes in the shape and location of blood vessels were also recorded. The results showed that the trend in cerebral perfusion levels of both hemispheres was highly consistent during MCAO, and the position of the blood vessels varied over time. This work will provide new insights of ischemic stroke and is helpful to assess the effectiveness of potential treatment strategies.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号