首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   

2.
《Phytomedicine》2014,21(3):247-253
In the present study, we report the effects of the ethanol extract from Mallotus philippinensis bark (EMPB) on mesenchymal stem cell (MSC) proliferation, migration, and wound healing in vitro and in a mouse model. Chemotaxis assays demonstrated that EMPB acted an MSC chemoattractant and that the main chemotactic activity of EMPB may be due to the effects of cinnamtannin B-1. Flow cytometric analysis of peripheral blood mononuclear cells in EMPB-injected mice indicated that EMPB enhanced the mobilization of endogenous MSCs into blood circulation. Bioluminescent whole-animal imaging of luciferase-expressing MSCs revealed that EMPB augmented the homing of MSCs to wounds. In addition, the efficacy of EMPB on migration of MSCs was higher than that of other skin cell types, and EMPB treatment improved of wound healing in a diabetic mouse model. The histopathological characteristics demonstrated that the effects of EMPB treatment resembled MSC-induced tissue repair. Taken together, these results suggested that EMPB activated the mobilization and homing of MSCs to wounds and that enhancement of MSC migration may improve wound healing.  相似文献   

3.
In order to achieve successful wound repair by regenerative tissue engineering using mesenchymal stem cells (MSCs), it is important to understand the response of stem cells in the scaffold matrix to mechanical stress.
To investigate the clinical effects of mechanical stress on the behavior of cells in scaffolds, bone marrow-derived mesenchymal stem cells (MSCs) were grown on a type-I collagen-glycosaminoglycan (GAG) scaffold matrix for one week under cyclic stretching loading conditions.
The porous collagen-GAG scaffold matrix for skin wound repair was prepared, the harvested canine MSCs were seeded on the scaffold, and cultured under three kinds of cyclic stretching loading conditions ( 0%: control, 5% strain, 15% strain ). After 7 days incubation, MSCs were evaluated histologically and immunohistochemically regarding the proliferation and differentiation.
Cultured MSCs in the high strain (15% strain) group showed activea-smooth muscle actin (α-SMA) expression and poor differentiation into type-I collagen-positive cells, whereas enhanced differentiation into type-I collagen positive cells and a lack ofa-SMA expression where shown in the lower stress (5% strain) group. These results suggest that mechanical stress may affect the proliferation and differentiation of stem cells, and subsequently the wound healing process, through attachment interactions between the stem cells and scaffold matrix. Our findings provide an additional consideration for clinical treatment of wound repair using regenerative tissue engineering.  相似文献   

4.
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC‐CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC‐CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC‐CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro‐angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC‐CM versus serum control, the ratio between collagen III and I mRNAs increased by 2‐fold. Furthermore, the gene expression for α‐smooth muscle actin, tissue inhibitor of metalloproteinase‐1 and 2 and matrix metalloproteinase‐14 was significantly increased by approximately 2‐fold. In conclusion, factors existing in MSC‐CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro‐healing phenotype in fibroblasts.  相似文献   

5.
Treatment of diabetes-impaired wound healing remains a major unresolved medical challenge. Here, we identified suppressed formation of a novel reparative lipid mediator 14S,21R-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA) in cutaneous wounds of diabetic db/db mice. These results indicate that diabetes impedes the biosynthetic pathways of 14S,21R-diHDHA in skin wounds. Administration of exogenous 14S,21R-diHDHA to wounds in diabetic animals rescued healing and angiogenesis. When db/db mesenchymal stem cells (MSCs) were administered together with 14S,21R-diHDHA to wounds in diabetic animals, they coacted to accelerate wound re-epithelialization, granulation tissue formation, and synergistically improved vascularization. In the pivotal cellular processes of angiogenesis, 14S,21R-diHDHA enhanced VEGF release, vasculature formation, and migration of db/db dermal microvascular endothelial cells (DMVECs), as well as remedied paracrine angiogenic functions of db/db MSCs, including VEGF secretion and the promotion of DMVEC migration and vasculature formation. Our results show that 14S,21R-diHDHA activates the p38 MAPK pathway in wounds, db/db MSCs, and DMVECs. Overall, the impeded formation of 14S,21R-diHDHA described in this study suggests that diabetes could affect the generation of pro-healing lipid mediators in wound healing. By restoring wound healing and MSC functions, 14S,21R-diHDHA is a new lead for the development of better therapeutics used in treating wounds of diabetics.  相似文献   

6.
Mesenchymal stem cells (MSCs) can differentiate not only into mesenchymal lineage cells but also into various other cell lineages. As MSCs can easily be isolated from bone marrow, they can be used in various tissue engineering strategies. In this study, we assessed whether MSCs can differentiate into multiple skin cell types including keratinocytes and contribute to wound repair. First, we found keratin 14-positive cells, presumed to be keratinocytes that transdifferentiated from MSCs in vitro. Next, we assessed whether MSCs can transdifferentiate into multiple skin cell types in vivo. At sites of mouse wounds that had been i.v. injected with MSCs derived from GFP transgenic mice, we detected GFP-positive cells associated with specific markers for keratinocytes, endothelial cells, and pericytes. Because MSCs are predominantly located in bone marrow, we investigated the main MSC recruitment mechanism. MSCs expressed several chemokine receptors; especially CCR7, which is a receptor of SLC/CCL21, that enhanced MSC migration. Finally, MSC-injected mice underwent rapid wound repaired. Furthermore, intradermal injection of SLC/CCL21 increased the migration of MSCs, which resulted in an even greater acceleration of wound repair. Taken together, we have demonstrated that MSCs contribute to wound repair via processes involving MSCs differentiation various cell components of the skin.  相似文献   

7.

Background

Wound healing involves the integration of complex biological processes. Several studies examined numerous approaches to enhance wound healing and to minimize its related morbidity. Both chitosan and mesenchymal stem cells (MSCs) were used in treating skin wounds. The aim of the current work was to compare MSCs versus chitosan in wound healing, evaluate the most efficient route of administration of MSCs, either intradermal or systemic injection, and elicit the mechanisms inducing epidermal and dermal cell regeneration using histological, immunohistochemical and fluorescent techniques.

Material and Methods

Forty adult male Sprague Dawley albino rats were divided into four equal groups (ten rats in each group): control group (Group I); full thickness surgical skin wound model, Group II: Wound and chitosan gel. Group III: Wound treated with systemic injection of MSCs and Group IV: Wound treated with intradermal injection of MSCs. The healing ulcer was examined on day 3, 5, 10 and 15 for gross morphological evaluation and on day 10 and 15 for histological, immunohistochemical and fluorescent studies.

Results

Chitosan was proved to promote wound healing more than the control group but none of their wound reached complete closure. Better and faster healing of wounds in MSCs treated groups were manifested more than the control or chitosan treated groups. It was found that the intradermal route of administration of stem cells enhanced the rate of healing of skin wounds better than the systemic administration to the extent that, by the end of the fifteenth day of the experiment, the wounds were completely healed in all rats of this group. Histologically, the wound areas of group IV were hardly demarcated from the adjacent normal skin and showed complete regeneration of the epidermis, dermis, hypodermis and underlying muscle fibers. Collagen fibers were arranged in many directions, with significant increase in their area percent, surrounding fully regenerated hair follicles and sebaceous glands in the dermis of the healed areas more than in other groups.

Conclusion

MSCs enhanced the healing process of wound closure more than chitosan gel treatment. Furthermore, MSCs injected intradermally, were more efficient in accelerating wound healing than any other mode of treatment.  相似文献   

8.
Adult bone marrow-derived mesenchymal stem cells (MSCs) are able to differentiate into myofibroblasts and be recruited into wound lesions and contribute to wound healing. The cellular and molecular mechanisms responsible for MSC trafficking and differentiation, however, are poorly understood. Local resting resident fibroblasts are activated after injury and play a critical role in recruiting MSCs. We investigated the role of platelet-derived growth factor-B-activated fibroblasts (PDGF-B-aFBs) in regulating recruitment, migration and differentiation of MSCs from GFP transgenic mice in an in vitro wound healing assay and a novel three-dimensional (3D) model. PDGF-B-aFBs caused significant increases in MSC migration velocity compared to control as demonstrated by time-lapse photography in an in vitro wound healing assay. Consistently, invasion/migration of MSCs into 3D collagen gels was enhanced in the presence of PDGF-B-aFBs. In addition, PDGF-B-aFBs induced differentiation of MSCs into myofibroblast. The regulatory effects of PDGF-B-aFBs are likely to be mediated by basic fibroblast growth factor (bFGF) and epithelial neutrophil activating peptide-78 (ENA-78 or CXCL5) as protein array analysis indicated elevated levels of these two soluble factors in culture supernatant of PDGF-B-aFBs. Blocking antibodies against bFGF and CXCL5 were able to inhibit both trafficking and differentiation of MSCs into 3D collagen gels while supplement of exogenous bFGF and/or CXCL5 promoted invasion/migration of MSCs into 3D collagen gels. Our results reveal that PDGF-B-aFBs play a key role in the recruitment/migration and differentiation of MSCs and implicate a bFGF- and CXCL5-dependent mechanism in mediating these effects.  相似文献   

9.
In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy.  相似文献   

10.
WRN mutation causes a premature aging disease called Werner syndrome (WS). However, the mechanism by which WRN loss leads to progeroid features evident with impaired tissue repair and regeneration remains unclear. To determine this mechanism, we performed gene editing in reprogrammed induced pluripotent stem cells (iPSCs) derived from WS fibroblasts. Gene correction restored the expression of WRN. WRN+/+ mesenchymal stem cells (MSCs) exhibited improved pro‐angiogenesis. An analysis of paracrine factors revealed that hepatocyte growth factor (HGF) was downregulated in WRN?/? MSCs. HGF insufficiency resulted in poor angiogenesis and cutaneous wound healing. Furthermore, HGF was partially regulated by PI3K/AKT signaling, which was desensitized in WRN?/? MSCs. Consistently, the inhibition of the PI3K/AKT pathway in WRN+/+ MSC resulted in reduced angiogenesis and poor wound healing. Our findings indicate that the impairment in the pro‐angiogenic function of WS‐MSCs is due to HGF insufficiency and PI3K/AKT dysregulation, suggesting trophic disruption between stromal and epithelial cells as a mechanism for WS pathogenesis.  相似文献   

11.
It is well known that bone marrow‐derived mesenchymal stem cells (MSCs) are involved in wound healing and regeneration responses. In this study, we globally profiled the proteome of MSCs to investigate critical factor(s) that may promote wound healing. Cysteine‐rich protein 61 (Cyr61) was found to be abundantly present in MSCs. The presence of Cyr61 was confirmed by immunofluorescence staining and immunoblot analysis. Moreover, we showed that Cyr61 is present in the culture medium (secretome) of MSCs. The secretome of MSCs stimulates angiogenic response in vitro, and neovascularization in vivo. Depletion of Cyr61 completely abrogates the angiogenic‐inducing capability of the MSC secretome. Importantly, addition of recombinant Cyr61 polypeptides restores the angiogenic activity of Cyr61‐depleted secretome. Collectively, these data demonstrate that Cyr61 polypeptide in MSC secretome contributes to the angiogenesis‐promoting activity, a key event needed for regeneration and repair of injured tissues. J. Cell. Physiol. 219: 563–571, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   

13.

Background

Chronic wounds present a major challenge in modern medicine. Even under optimal conditions, the healing process may lead to scarring and fibrosis. The ability of mesenchymal stem cells (MSCs) to differentiate into other cell types makes these cells an attractive therapeutic tool for cell transplantation. Both tissue-engineered construct and MSC therapy are among the current wound healing procedures and potential care. Chitosan has been widely applied in tissue engineering because of its biocompatibility and biodegradability.

Aim

The aim of the current work was to compare the efficiency of MSCs and chitosan dressing, alone or in combination treatment on wound healing.

Methods

This study was conducted on 15 rabbits, which were randomly divided in 3 groups based on the type of treatment with MSCs, chitosan dressing and combination of both. A full–thickness skin defect was excised from the right and left side of the back of each animals. Defects on right sides were filled with treatments and left side defects were left as control. Evaluation of the therapeutic effectiveness was performed through a variety of clinical and microscopical evaluations and measurements of the process of wound healing on days 7, 14, 21, and 28. Histological evaluation of wound healing was classified by different scoring systems.

Results

The data indicated that wounds treated with bone marrow derived MSC had enhanced cellularity and better epidermal regeneration. During the early stages of wound healing, the closure rate of bone marrow derived MSC-treated wounds were significantly higher than other treatments (P < 0.05). Although the MSCs in the wound edges enhance the healing of the full–thickness wound, the healing process of chitosan treatment was slower than the control group.

Conclusion

This study revealed advanced granulation tissue formation and epithelialization in wounds treated with MSCs, and may suggests this treatment as an effective applicant in wound healing process. Chitosan scaffold dressings, whether alone or in combination with MSCs, have worsened the wound healing as compared to the control group.  相似文献   

14.
Successful cell therapy will depend on the ability to monitor transplanted cells. With cell labeling, it is important to demonstrate efficient long term labeling without deleterious effects on cell phenotype and differentiation capacity. We demonstrate long term (7 weeks) retention of superparamagnetic iron oxide particles (SPIO) by mesenchymal stem cells (MSCs) in vivo, detectable by MRI. In vitro, multilineage differentiation (osteogenic, chondrogenic and adipogenic) was demonstrated by histological evaluation and molecular analysis in SPIO labeled and unlabeled cells. Gene expression levels were comaparable to unlabeled controls in adipogenic and chondrogenic conditions however not in the osteogenic condition. MSCs seeded into a scaffold for 21 days and implanted subcutaneously into nude mice for 4 weeks, showed profoundly altered phenotypes in SPIO labeled samples compared to implanted unlabeled control scaffolds, indicating chondrogenic differentiation. This study demonstrates long term MSC traceability using SPIO and MRI, uninhibited multilineage MSC differentiation following SPIO labeling, though with subtle but significant phenotypical alterations.  相似文献   

15.
《Cytotherapy》2020,22(5):247-260
The process of wound healing restores skin homeostasis but not full functionality; thus, novel therapeutic strategies are needed to accelerate wound closure and improve the quality of healing. In this context, tissue engineering and cellular therapies are promising approaches. Although sharing essential characteristics, mesenchymal stromal cells (MSCs) isolated from different tissues might have distinct properties. Therefore, the aim of this study was to comparatively investigate, by a mouse model in vivo assay, the potential use of dermal-derived MSCs (DSCs) and adipose tissue–derived MSCs (ASCs) in improving skin wound healing. Human DSCs and ASCs were delivered to full-thickness mouse wounds by a collagen-based scaffold (Integra Matrix). We found that the association of both DSCs and ASCs with the Integra accelerated wound closure in mice compared with the biomaterial only (control). Both types of MSCs stimulated angiogenesis and extracellular matrix remodeling, leading to better quality scars. However, the DSCs showed smaller scar size,superior extracellular matrix deposition, and greater number of cutaneous appendages. Besides, DSCs and ASCs reduced inflammation by induction of macrophage polarization from a pro-inflammatory (M1) to a pro-repair (M2) phenotype. In conclusion, both DSCs and ASCs were able to accelerate the healing of mice skin wounds and promote repair with scars of better quality and more similar to healthy skin than the empty scaffold. DSCs associated with Integra induced superior overall results than the Integra alone, whereas scaffolds with ASCs showed an intermediate effect, often not significantly better than the empty biomaterial.  相似文献   

16.
Chronic or non-healing skin wounds present an ongoing challenge in advanced wound care, particularly as the number of patients increases while technology aimed at stimulating wound healing in these cases remains inefficient. Mesenchymal stem cells (MSCs) have proved to be an attractive cell type for various cell therapies due to their ability to differentiate into various cell lineages, multiple donor tissue types, and relative resilience in ex-vivo expansion, as well as immunomodulatory effects during transplants. More recently, these cells have been targeted for use in strategies to improve chronic wound healing in patients with diabetic ulcers or other stasis wounds. Here, we outline several mechanisms by which MSCs can improve healing outcomes in these cases, including reducing tissue inflammation, inducing angiogenesis in the wound bed, and reducing scarring following the repair process. Approaches to extend MSC life span in implant sites are also examined.  相似文献   

17.
Cutaneous wounds persist as a health care crisis in spite of increased understanding of the cellular and molecular responses to injury. Contributing significantly to this crisis is the lack of reliable therapies for treatment of wounds that are slow to heal including chronic wounds and deep dermal wounds that develop hypertrophic scars. This article will review the growing evidence demonstrating the promise of multipotent mesenchymal stem/stromal (MSCs) for the treatment of impaired wound healing. MSCs are often referred to as mesenchymal stem cells despite concerns that these cells are not truly stem cells given the lack of evidence demonstrating self-renewal in vivo. Regardless, abundant evidence demonstrates the therapeutic potential of MSCs for repair and regeneration of damaged tissue due to injury or disease. To date, MSC treatment of acute and chronic wounds results in accelerated wound closure with increased epithelialization, granulation tissue formation and angiogenesis. Although there is evidence for MSC differentiation in the wound, most of the therapeutic effects are likely due to MSCs releasing soluble factors that regulate local cellular responses to cutaneous injury. Important challenges need to be overcome before MSCs can be used effectively to treat wounds that are slow to heal.  相似文献   

18.
The function of subcutaneous adipocytes in promoting wound healing is significantly suppressed in diabetic wounds. Recent studies have demonstrated the ability of mesenchymal stem cell (MSC) to ameliorate impaired diabetic wound healing. We hypothesized that MSC function may involve subcutaneous adipocytes. The abnormal function of subcutaneous adipocytes from STZ induced diabetic mice including glucose uptake and free fatty acid (FFA) secretion level were assessed. Then these cells were co-cultured with MSC via a transwell system to observe the changes of metabolic index and glucose transporter four (GLUT4) as well as phosphoinositide 3-kinase/protein kinase (PI3K/AKT) signaling pathway expression. The results of metabolic index suggest that MSC obviously attenuated the diabetes-induced functional impairment. Both mRNA and protein expression analyses showed that PI3K/AKT insulin signaling pathway and GLUT4 expression were up-regulated. These changes were substantially associated with a increased level of insulin-like growth factor-1 (IGF-1) secretion from MSC. These findings suggest that MSC could attenuate abnormal function of diabetic adipocytes by IGF-1secretion, which was more or less associated with the beneficial effects of MSC on improving diabetic wound healing.  相似文献   

19.
The extracellular matrix (ECM) contains rich biological cues for cell recruitment, proliferationm, and even differentiation. The osteoinductive potential of scaffolds could be enhanced through human bone marrow mesenchymal stem cell (hBMSC) directly depositing ECM on surface of scaffolds. However, the role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSC)‐secreted ECM in bone formation remain unknown. We tested the osteoinductive properties of a hUCMSC‐secreted ECM construct (hUCMSC‐ECM) in a large femur defect of a severe combined immunodeficiency (SCID) mouse model. The hUCMSC‐ECM improved the colonization of endogenous MSCs and bone regeneration, similar to the hUCMSC‐seeded scaffold and superior to the scaffold substrate. Besides, the hUCMSC‐ECM enhanced the promigratory molecular expressions of the homing cells, including CCR2 and TβRI. Furthermore, the hUCMSC‐ECM increased the number of migrated MSCs by nearly 3.3 ± 0.1‐fold, relative to the scaffold substrate. As the most abundant cytokine deposited in the hUCMSC‐ECM, insulin‐like growth factor binding protein 3 (IGFBP3) promoted hBMSC migration in the TβRI/II‐ and CCR2‐dependent mechanisms. The hUCMSC‐ECM integrating shRNA‐mediated silencing of Igfbp3 that down‐regulated IGFBP3 expression by approximately 60%, reduced the number of migrated hBMSCs by 47%. In vivo, the hUCMSC‐ECM recruited 10‐fold more endogenous MSCs to initiate bone formation compared to the scaffold substrate. The knock‐down of Igfbp3 in the hUCMSC‐ECM inhibited nearly 60% of MSC homing and bone regeneration capacity. This research demonstrates that IGFBP3 is an important MSC homing molecule and the therapeutic potential of hUCMSC‐ECM in bone regeneration is enhanced by improving MSC homing in an IGFBP3‐dependent mechanism.  相似文献   

20.
We have investigated the wound-healing effects of mesenchymal stem cells (MSCs) in combination with human amniotic membrane (HAM) when grafted into full-thickness skin defects of rabbits. Five defects in each of four groups were respectively treated with HAM loaded with autologous MSCs (group A), HAM loaded with allologous MSCs (group B), HAM with injected autologous MSCs (group C), and HAM with injected allologous MSCs (group D). The size of the wounds was calculated for each group at 7, 12, and 15 days after grafting. The wounds were subsequently harvested at 25 days after grafting. Sections stained with hematoxylin and eosin were used to determine the quality of wound healing, as based on the characteristics and amount of granulated tissue in the epidermal and dermal layers. Groups A and B showed the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen on post-operative days 7, 12, and 15. Although a slight trend toward improved wound healing was seen in group A compared with group B, no statistically significant difference was found at any time point between the two groups. Histological examination of healed wounds from groups A and B showed a thin epidermis with mature differentiation and collagen bundle deposition plus recovered skin appendages in the dermal layer. In contrast, groups C and D showed thickened epidermis with immature epithelial cells and increased fibroblast proliferation with only partially recovered skin appendages in the dermal layer. Thus, the graft of HAM loaded with MSCs played an effective role during the healing of skin defects in rabbits, with no significant difference being observed in wound healing between autologous and allologous MSC transplantation. This study was supported by research funds from Dong-A University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号