首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Doppler optical coherence tomography (OCT) offers additional flow velocity information, which extends the application of OCT. Phase wrapping is the inherent problem that limits measureable range of Doppler OCT. We propose a phase unwrapping method which is suitable for correcting phase in Doppler OCT images. Points (pixels) in flow region are divided into groups according to the radial distance. Points in the same group are supposed to have close velocity. Phase unwrapping algorithm begins at the boundary layer group and is performed sequentially toward the center. Using the proposed criterion, points in a group are separated into two categories, signal points and noise points. Wrapping rounds are determined for signal points phase unwrapping. Mean value of the corrected signal points replaces the noise points for noise reduction. The method is validated with capillary tube flow phantom and in vivo blood flow.  相似文献   

2.
Congenital cardiovascular defects are the leading cause of birth defect related death. It has been hypothesized that fluid mechanical forces of embryonic blood flow affect cardiovascular development and play a role in congenital malformations. Studies in small animal embryos can improve our understanding of congenital malformations and can lead to better treatment. We present a feasibility study in which high‐resolution optical coherence tomography (OCT) and computational fluid dynamics (CFD) are combined to provide quantitative analysis of the embryonic flow mechanics and the associated anatomy in a small animal model.

  相似文献   


3.
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular‐level structural details of GI mucosa over a large tissue area. In this article, we report a fiber‐optic‐based micro‐optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular‐level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth‐of‐focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal‐end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber‐optic μOCT system is capable of visualizing cellular‐level morphological features. We also demonstrate that time‐lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular‐level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers.   相似文献   

4.
A polarization‐multiplexed, dual‐beam setup is proposed to expand the field of view (FOV) for a swept source optical coherence tomography angiography (OCTA) system. This method used a Wollaston prism to split sample path light into 2 orthogonal‐polarized beams. This allowed 2 beams to shine on the cornea at an angle separation of ~14°, which led to a separation of ~4.2 mm on the retina. A 3‐mm glass plate was inserted into one of the beam paths to set a constant path length difference between the 2 polarized beams so the interferogram from the 2 beams are coded at different frequency bands. The resulting OCTA images from the 2 beams were coded with a depth separation of ~2 mm. A total of 5 × 5 mm2 angiograms from the 2 beams were obtained simultaneously in 4 seconds. The 2 angiograms then were montaged to get a wider FOV of ~5 × 9.2 mm2.   相似文献   

5.
Optical coherence tomography angiography (OCTA) is a functional extension of optical coherence tomography for non-invasive in vivo three-dimensional imaging of the microvasculature of biological tissues. Several algorithms have been developed to construct OCTA images from the measured optical coherence tomography signals. In this study, we compared the performance of three OCTA algorithms that are based on the variance of phase, amplitude, and the complex representations of the optical coherence tomography signals for rodent retinal imaging, namely the phase variance, improved speckle contrast, and optical microangiography. The performance of the different algorithms was evaluated by comparing the quality of the OCTA images regarding how well the vasculature network can be resolved. Quantities that are widely used in ophthalmic studies including blood vessel density, vessel diameter index, vessel perimeter index, vessel complexity index were also compared. Results showed that both the improved speckle contrast and optical microangiography algorithms are more robust than phase variance, and they can reveal similar vasculature features while there are statistical differences in the calculated quantities.  相似文献   

6.
Wide‐field optical coherence tomography angiography (OCTA) is gaining interest in clinical imaging applications. In this pursuit, it is challenging to maintain the imaging resolution and sensitivity throughout the wide field of view (FoV). Here, we propose a novel method/system of dual‐beam arrangement and Fourier‐domain multiplexing to achieve wide‐field OCTA when imaging the uneven surface samples. The proposed system provides 2 separate FoVs, with flexibility that the imaging area, focus of the imaging beam and imaging depth range can be individually adjusted for each FoV, leading to either (1) increased system imaging FoV or (2) capability of targeting 2 regions of interests that locate at depths with large difference between each other. We demonstrate this novel method by employing 100 kHz laser source in a swept source OCTA to achieve an effective 200 kHz sweeping rate, covering a 22 × 22 mm FoV. The results are verified by a SS‐OCTA system employing a 200 kHz laser source, together with the experimental demonstrations when imaging whole brain vasculature in rodent models and skin blood perfusion in human fingers, show‐casing the capability of proposed system to image live large samples with complex surface topography.   相似文献   

7.
A single‐channel high‐resolution cross‐polarization (CP) optical coherence tomography (OCT) system is presented for multicontrast imaging of human myocardium in one‐shot measurement. The intensity and functional contrasts, including the ratio between the cross‐ and co‐polarization channels as well as the cumulative retardation, are reconstructed from the CP‐OCT readout. By comparing the CP‐OCT results with histological analysis, it is shown that the system can successfully delineate microstructures in the myocardium and differentiate the fibrotic myocardium from normal or ablated myocardium based on the functional contrasts provided by the CP‐OCT system. The feasibility of using A‐line profiles from the 2 orthogonal polarization channels to identify fibrotic myocardium, normal myocardium and ablated lesion is also discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号