首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Er:YAG laser is currently used for bone ablation. However, the effect of Er:YAG laser irradiation on bone healing remains unclear. The aim of this study was to investigate bone healing following ablation by laser irradiation as compared with bur drilling. Rat calvarial bone was ablated using Er:YAG laser or bur with water coolant. Er:YAG laser effectively ablated bone without major thermal changes. In vivo micro‐computed tomography analysis revealed that laser irradiation showed significantly higher bone repair ratios than bur drilling. Scanning electron microscope analysis showed more fibrin deposition on laser‐ablated bone surfaces. Microarray analysis followed by gene set enrichment analysis revealed that IL6/JAK/STAT3 signaling and inflammatory response gene sets were enriched in bur‐drilled bone at 6 hours, whereas the E2F targets gene set was enriched in laser‐irradiated bone. Additionally, Hspa1a and Dmp1 expressions were increased and Sost expression was decreased in laser‐irradiated bone compared with bur‐drilled bone. In granulation tissue formed after laser ablation, Alpl and Gblap expressions increased compared to bur‐drilled site. Immunohistochemistry showed that osteocalcin‐positive area was increased in the laser‐ablated site. These results suggest that Er:YAG laser might accelerate early new bone formation with advantageous surface changes and cellular responses for wound healing, compared with bur‐drilling.   相似文献   

2.
In‐vitro experimental parametric studies of laser ablation using natural sialoliths and artificial stones have been performed toward an efficient laser treatment of sialolithiasis. Surface microstructure and water adsorption become critical for coupling high power pulsed Ho:YAG laser radiation (λ = 2080 nm, τ ~250 μsec), inducing ablative interactions and stone fragmentation. Results reveal a generic trend, with single pulse laser energy density threshold for sialolith ablative erosion at ~200 J cm?2 (corresponding to intensity ~800 kW cm?2) and fragmentation rates reaching ~1 mm/pulse at ~2400 J cm?2. This process shows no saturation, suggesting that very high energy density irradiation at low pulse repetition rate is an efficient approach. Such operation facilitates rapid cooling and minimal thermal loading of the oral and maxillofacial area, thus causing negligible adverse effects. The method is expected to contribute to the establishment of an easy and optimal therapeutic protocol for sialolithiasis pathology.  相似文献   

3.
Photobiomodulation (PBM) involves light to activate cellular signaling pathways leading to cell proliferation or death. In this work, fluorescence and Coherent anti‐Stokes Raman Scattering (CARS) imaging techniques were applied to assess apoptosis in human cervical cancer cells (HeLa) induced by near infrared (NIR) laser light (808 nm). Using the Caspase 3/7 fluorescent probe to identify apoptotic cells, we found that the pro‐apoptotic effect is significantly dependent of irradiation dose. The highest apoptosis rate was noted for the lower irradiation doses, that is, 0.3 J/cm2 (~58%) and 3 J/cm2 (~28%). The impact of light doses on proteins/lipids intracellular metabolism and distribution was evaluated using CARS imaging, which revealed apoptosis‐associated reorganization of nuclear proteins and cytoplasmic lipids after irradiation with 0.3 J/cm2. Doses of NIR light causing apoptosis (0.3, 3 and 30 J/cm2) induced a gradual increase in the nuclear protein level over time, in contrast to proteins in cells non‐irradiated and irradiated with 10 J/cm2. Furthermore, irradiation of the cells with the 0.3 J/cm2 dose resulted in lipid droplets (LDs) accumulation, which was apparently caused by an increase in reactive oxygen species (ROS) generation. We suggest that PBM induced apoptosis could be caused by the ability of NIR light to trigger excessive LDs formation which, in turn, induces cellular cytotoxicity.   相似文献   

4.
In this work, a simple lignin‐based laser lithography technique is developed and used to fabricate on‐chip microsupercapacitors (MSCs) using 3D graphene electrodes. Specifically, lignin films are transformed directly into 3D laser‐scribed graphene (LSG) electrodes by a simple one‐step CO2 laser irradiation. This step is followed by a water lift‐off process to remove unexposed lignin, resulting in 3D graphene with the designed electrode patterns. The resulting LSG electrodes are hierarchically porous, electrically conductive (conductivity is up to 66.2 S cm?1), and have a high specific surface area (338.3 m2 g?1). These characteristics mean that such electrodes can be used directly as MSC electrodes without the need for binders and current collectors. The MSCs fabricated using lignin laser lithography exhibit good electrochemical performances, namely, high areal capacitance (25.1 mF cm?2), high volumetric energy density (≈1 mWh cm?3), and high volumetric power density (≈2 W cm?3). The versatility of lignin laser lithography opens up the opportunity in applications such as on‐chip microsupercapacitors, sensors, and flexible electronics at large‐scale production.  相似文献   

5.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae‐laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub‐lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm‐2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub‐lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non‐irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8±2.12 to 97.1±4.1% for laser fluences of 0.013 and 0.1 J cm‐2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2±3 to 13.4±1.2% for fluences of 0.013 and 0.1 J cm‐2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non‐irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm‐2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   

6.
The purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light‐dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm2 and more. Based on the bleaching curves, six PDT regimes were applied for irradiation using CW and pulsed regimes at a power density of 160 mW/cm2 and light doses of 140 J/cm2, 170 J/cm2 and 200 J/cm2. Irradiation of KillerRed‐expressing spheroids in the pulsed mode (pulse duration 15 ns, pulse repetition rate 10 Hz) induced predominantly apoptotic cell death, while in the case of CW mode the cancer cells underwent necrosis. In general, these results improve our understanding of photobleaching mechanisms in GFP‐like proteins and show the importance of appropriate selection of treatment mode for PDT with KillerRed.

Representative fluorescence image of two KillerRed‐expressing spheroids before and immediately after CW irradiation.  相似文献   


7.
The effects of low-intensity laser irradiation in the red (632.8 nm), green (532 nm), and blue (441.2 nm) spectral ranges on wound healing has been studied in rats. The effect of the traditionally used red laser irradiation has been compared with the effect caused by laser irradiation in other spectral ranges, aiming to support the provisional hypothesis that a similar healing effect could be achieved at lower doses of wound irradiation by lasers emitting in the blue and green spectral ranges. The following parameters have been used to characterize healing of the experimental wounds: the functional activity of phagocytes in the wound exudate, which was determined from luminol-dependent chemiluminescence, the phagocyte number; the wound exudates’ antioxidant activity; and the rate of healing, which was determined as the change of the wound surface area. It was found that in all cases the laser irradiation accelerated the healing of wounds. Exposure to red laser irradiation at the dose of 1.5 J/cm2), and to blue or green laser irradiation at a dose of 0.75 J/cm2 shortened the time of the wound healing from 22 to 17 and 19 days, respectively. The functional activity of leukocytes in irradiated groups increased by day 5 after surgery, whereas in the control group it decreased. The superoxide dismutase activity increased in all experimental groups by day 5 after surgery. Laser irradiation in the red spectral range at a dose of 1.5 J/cm2 resulted in a larger increase in superoxide dismutase activity, as compared to that found after exposure to laser irradiation in the blue and green spectral ranges at a dose of 0.75 J/cm2.  相似文献   

8.
Therapeutic applications of light emitting diode‐red light (LED‐RL) are expanding, yet data on its clinical effects are lacking. Our goal was to evaluate the safety of high fluence LED‐RL (≥160 J/cm2). In two phase I, single‐blind, dose escalation, randomized controlled trials, healthy subjects received LED‐RL or mock irradiation to the forearm thrice weekly for 3 weeks at fluences of 160‐640 J/cm2 for all skin types (STARS 1, n = 60) and at 480‐640 J/cm2 for non‐Hispanic Caucasians (STARS 2, n = 55). The primary outcome was the incidence of adverse events (AEs). The maximum tolerated dose was the highest fluence that did not elicit predefined AEs. Dose‐limiting AEs, including blistering and prolonged erythema, occurred at 480 J/cm2 in STARS 1 (n = 1) and 640 J/cm2 in STARS 2 (n = 2). AEs of transient erythema and hyperpigmentation were mild. No serious AEs occurred. We determined that LED‐RL is safe up to 320 J/cm2 for skin of color and 480 J/cm2 for non‐Hispanic Caucasian individuals. LED‐RL may exert differential cutaneous effects depending on race and ethnicity, with darker skin being more photosensitive. These findings may guide future studies to evaluate the efficacy of LED‐RL for the treatment of various diseases.  相似文献   

9.
Nanosecond pulsed laser irradiation can trigger a release of nucleic acids from gold nanoparticles, but the involved nanoeffects are not fully understood yet. Here we investigate the release of coumarin labeled siRNA from 15 to 30 nm gold particles after nanosecond pulsed laser irradiation. Temperatures in the particle and near the surface were calculated for the different radiant exposures. Upon irradiation with laser pulses of 4 nanosecond duration release started for both particle sizes at a calculated temperature increase of approximately 500 K. Maximum coumarin release was observed for 15 nm particles after irradiation with radiant exposure of 80 mJ cm?2 and with 32 mJ cm?2 for 30 nm particles. This corresponds to a temperature increase of 815 and 900 K, respectively. Our results show that the molecular release by nanosecond pulsed irradiation is based on a different mechanism compared to continuous or femtosecond irradiation. Local temperatures are considerably higher and it is expected that bubble formation plays a crucial role in release and damage to cellular structures.   相似文献   

10.
The plasma parameter studies of the Nd:YAG (neodymium-doped yttrium aluminum garnet, Nd:Y3Al15O12) crystal by using the fundamental (1064 nm) and second (532 nm) harmonics of Nd:YAG laser are reported. The electron temperature (T e ) and electron number density (N e) were determined using the Boltzmann plot method and the Stark-broadened line profile, respectively. An increase in the plasma parameters have been observed with an increase in the laser irradiance for both laser modes. The electron temperatures were calculated in the range of 0.53–0.66 eV for 1064 nm and 0.47–0.60 eV for 532 nm, and the electron number densities were determined in the range of 7.43 × 1015–3.27 × 1016 cm?3 for 1064 nm and 1.35 × 1016–3.97 × 1016 cm?3 for 532 nm in the studied irradiance range of 1.19–12.5 GW/cm2. However, the spatial evolution of the plasma parameters investigated up to 2.75 mm away from the target surface at a fixed laser irradiance of 6.51 GW/cm2 showed a decreasing trend. In addition, the estimated values of the inverse bremsstrahlung (IB) absorption coefficients at both laser wavelengths showed that the IB process is dominant for the 1064-nm laser.  相似文献   

11.
In experiments in vitro, the effects of polychromatic visible (VIS) light combined with polychromatic infrared light (VIS-IR, 480–3400 nm) and the effects of the entire spectrum of VIS radiation (385–750 nm) on viability and proliferative activity of the murine hepatoma cells MH22a were studied. In experiments in vivo, changes in the tumorigenic properties of cells MH22a were studied after the same kinds of light exposure. It was shown that irradiation of hepatoma cells with two kinds of polychromatic light at a wide range of doses (4.8–38.4 J/cm2) did not lead to an increase in the number of dead cells for 24–72 h of cultivation and did not cause deceleration of the hepatoma cell proliferation; moreover, the VIS-IR light at a dose of 4.8 J/cm2 and the VIS light at a dose 38.4 J/cm2 even promoted more intense cell proliferation after 24 h. In cells irradiated with VIS-IR and VIS light, the proliferation index rose by 1.6 and 1.4 times, respectively, and the time of the cells’ number doubling decreased as compared with control. Studying the tumorigenic properties of irradiated tumor cells has shown that, for 30 days after transplantation to syngenic mice C3HA of hepatoma cells 24 h after their irradiation with VIS-IR light at a dose of 4.8 J/cm2, the tumor volume decreased significantly (2.6–4.1 times) at all periods of observation, while the incidence of tumor formation decreased, whereas the survival of the tumor-bearing mice did not change. Transplantation of cells irradiated with the same light at a dose of 9.6 J/cm2 did not lead to significant changes in the tumor volume, the tumor formation incidence, and animal survival. The main contribution to the antitumor effect of VIS-IR light seems to be made by the VIS component, as transplantation into mice of cells irradiated with VIS light alone at a dose of 38.4 J/cm2 also stimulating proliferation of hepatoma cells in vitro resulted in a decrease of their tumorigenic properties. However, the IR component in the combined VIS-IR radiation enhanced the antitumor effect of the VIS light; as a result, it was manifested after use of doses eight times lower (4.8 J/cm2) than in the case of VIS light alone (38.4 J/cm2). Mechanisms of the decrease of tumorigenic properties of hepatoma cells after irradiation with polychromatic light at doses stimulating their proliferation in vitro are studied.  相似文献   

12.
13.

Objectives

Low level laser therapy (LLLT), which stimulates natural biological processes in the application region, is frequently used in dental treatments. The aim of our study was to evaluate the effects of LLLT which could activate precancerous cells or increase existing cancerous tissue in case of clinically undetectable situations.

Materials and methods

Saos‐2 osteoblast‐like osteosarcoma cells and A549 human lung carcinoma cells were used. Twenty‐four hours after preparation of cell culture plates, laser irradiation was performed 1, 2 and 3 times according to the test groups using Nd:YAG laser with the power output 0.5, 1, 2 and 3 W. Cell proliferation analysis was performed by MTT assay at the 24th hour following the last laser applications.

Results

Generally, it was observed that the proliferation rates increased as the number of applications increased, when compared to the controls, especially in those cases in which the irradiation was performed 2 or 3 times more.

Conclusion

The findings of this study have led to the conclusion that LLLT increases cancer cell proliferation, depending on the power output level of the laser and the number of applications. In addition to the proliferation and mitotic activity of the cancer tissue cells, we concluded that LLLT, which is frequently used in dental practice, could activate precancerous cells or increase existing cancerous tissue.
  相似文献   

14.
目的:观察脉冲Nd:YAG激光照射体外单层培养KB细胞后的形态改变及损伤后HSP70,c-Fos的表达情况,初步探讨较强脉冲激光对细胞的损伤效应及损伤修复机制。方法:建立单层培养细胞的脉冲Nd:YAG激光损伤模型,每个脉冲能量密度为160J/cm^2~186J/cm^2或220J/cm^2~257J/cm^2,分别于照后即刻、2h和6h,用台盼蓝染色、TUNEL检测分析该激光对KB细胞的损伤特点,免疫组化法检测HSP70,c-Fos的表达水平。结果:当照射剂量为220J/ecm^2~257J/cm^2时,照后即刻,光斑中央细胞形态严重破坏,直接坏死;周围细胞形态未发生明显改变。2h后周围细胞TUNEL。着色也增强,呈强阳性。照后6h光斑中央及周围细胞着色均减弱。TUNEL着色区直径随时间先扩大后缩小。当照射剂量为160J/cm^2~186J/cm^2时,细胞内HSP70、c-Fos表达随时问先显著增强,而后减弱至正常。结论:脉冲Nd:YAG激光在所选剂量下,可以引起单层KB细胞的损伤,包括即刻坏死、延迟性死亡及可逆性损伤。HSP70、c-Fos的高表达说明它们在保护受损细胞、修复激光所致损伤中发挥重要作用。  相似文献   

15.
Aggregation of lysozyme in an acidic solution generates inactive amyloid-like fibrils, with a broad infrared peak appearing at 1,610?C1,630?cm?1, characteristic of a ??-sheet rich structure. We report here that spontaneous refolding of these fibrils in water could be promoted by mid-infrared free-electron laser (mid-IR FEL) irradiation targeting the amide bands. The Fourier transform infrared spectrum of the fibrils reflected a ??-sheet content that was as low as that of the native structure, following FEL irradiation at 1,620?cm?1 (amide I band); both transmission-electron microscopy imaging and Congo Red assay results also demonstrated a reduced fibril structure, and the enzymatic activity of lysozyme fibrils recovered to 70?C90?% of the native form. Both irradiations at 1,535?cm?1(amide II band) and 1,240?cm?1 (amide III band) were also more effective for the refolding of the fibrils than mere heating in the absence of FEL. On the contrary, either irradiation at 1,100 or 2,000?cm?1 afforded only about 60?% recovery of lysozyme activity. These results indicate that the specific FEL irradiation tuned to amide bands is efficient in refolding of lysozyme fibrils into native form.  相似文献   

16.
Retinoblastoma (RB) is a rare form of cancer of the retina most prevalent in young children. We successfully show that laser‐induced cell disruption, mediated by gold plasmonic nanoparticle (NP), is a potential and efficient therapy to kill the cancerous cells. The proof of concept is demonstrated in vitro on cultured Y79 RB cancer cells with a nanosecond laser at 527 nm, for both attached cells at the bottom of a Petri dish and for floating, clustered cells in a viscous vitreous phantom comprised of hyaluronan. We report a cellular death of 82% after irradiation in classic culture medium and a cellular death of 98% in vitreous phantom, for similar number of NPs in each sample. It is found that the NPs efficiently penetrate the floating Y79 clusters cells in the vitreous phantom, leading to a cellular death of over 85% even within the centre of the aggregates. The proposed treatment technique is based on a similar nanosecond laser used to eliminate floaters in the vitreous, but with much lower (100‐1000 times) fluences of 20 J cm?2.   相似文献   

17.
A balance is maintained between matrix synthesis and degradation, and a prolonged increase in matrix metalloproteinases (MMPs) affects healing. Photobiomodulation (PBM) speeds up healing and alters wound environment. The study aimed to determine changes in protein and gene expression of collagen type 1 (Col‐I), MMP‐3 and ‐9 and TIMP‐1 in fibroblasts irradiated at 660 or 830 nm. Commercially purchased human skin fibroblast cells were modeled into five groups namely, normal, normal wounded, diabetic wounded, hypoxic wounded and diabetic hypoxic wounded. Control cells were sham irradiated. Laser irradiation was conducted at 660 or 830 nm (108/or 94 mW, 9.1 cm2, 420/or 483 s) with 5 J/cm2. Forty‐eight hours post‐irradiation, protein expression of TIMP‐1, MMP‐3, ?9 and Col‐I was determined by flow cytometry and immunofluorescence, and gene expression by real‐time RT‐PCR. There was an increase in TIMP‐1 and Col‐I, and a decrease in MMP‐3 and ‐9, as well as an alteration in mRNA expression of MMP3, MMP9, TIMP1 and COL1A1 in irradiated cells. Due to the responsiveness of the diabetic hypoxic wounded model, the findings propose this model as appropriate for wound healing studies and suggest that PBM promotes the remodeling phase of wound healing by decreasing matrix degradation and upregulating synthesis.   相似文献   

18.
Aims: To determine inactivation profiles of three human norovirus (NoV) surrogate viruses and coliphage MS2 by ultraviolet (UV) irradiation and the protective effect of cell association on UV inactivation. Methods and Results: The inactivation rate for cell‐free virus or intracellular echovirus 12 was determined by exposure to 254‐nm UV light at fluence up to 100 mJ cm?2. The infectivity of murine norovirus (MNV), feline calicivirus (FCV) and echovirus 12 was determined by cell culture infectivity in susceptible host cell lines, and MS2 infectivity was plaque assayed on Escherichia coli host cells. The UV fluencies to achieve 4‐log10 inactivation were 25, 29, 30 and 70 (mJ cm?2) for cell‐free FCV, MNV, echovirus 12 and MS2, respectively. However, a UV fluence of 85 mJ cm?2 was needed to inactivate intracellular echovirus 12 by 4 log10. Conclusions: Murine norovirus and echoviruses 12 are more conservative surrogates than FCV to predict the UV inactivation response of human NoV. Intracellular echovirus 12 was 2·8‐fold more resistant to UV irradiation than cell‐free one. Significance and Impact of the Study: Variation in UV susceptibilities among NoV surrogate viruses and a likely protective effect of cell association on virus susceptibility to UV irradiation should be considered for effective control of human NoV in water.  相似文献   

19.

The mechanisms of laser action on bacteria are not adequately understood. Here, an attempt has been made to study the fluctuation in ATP (adenosine triphosphate) concentration following laser irradiation from a pulsed Nd:YAG laser on a marine biofilm-forming bacterium Pseudoalteromonas carrageenovora. A stationary phase bacterial suspension (density 107-8 mlm 1) was exposed to pulsed laser irradiations at a fluence of 0.1 J cmm 2 (pulse width 5 ns, repetition rate 10 Hz) for different durations, ranging from 2 s to 15 min. The total viable count (TVC) and ATP concentration of the irradiated samples were determined immediately after the laser irradiation. While the maximum reduction in the TVC observed with respect to the control was 59% immediately after 15 min irradiation, the ATP concentration showed a reduction of about 86% for the same duration. The ATP concentration showed an abrupt reduction from 3 min of laser irradiation and continued to reduce significantly with increasing duration of irradiation. Thus, 3 min irradiation at a fluence of 0.1 J cmm 2 is considered as an approximate threshold for ATP production in this bacterium. As the decreased level of ATP production continued, bacterial mortality resulted. The reduction in ATP production could be due to damage caused by the laser irradiations on bacterial metabolic processes such as cellular respiration.  相似文献   

20.
Noninvasive body shaping is becoming a growing demand. The aim of this study was to investigate the efficacy and safety of the combined treatments of 1064 nm Nd:YAG and 2940 nm Er:YAG in noninvasive lipolysis and skin tightening. Ten females were enrolled, and all women's side of the waist or the lower part of the abdomen were treated. In the first step, the 1064 nm Nd:YAG was used. As a second step, the 2940 nm Er:YAG laser was applied. Each woman was treated four times, once every 2 weeks. The effects were determined by comparative photo documentation, waist circumference measurement, two‐dimensional B‐mode ultrasonography and low‐dose native computer tomography (CT), whereas body fat was monitored with bioelectric impedance. The tissue firmness was measured by ultrasound shear wave elastography. Combined laser treatment significantly reduced waist circumference and total body fat. Ultrasonography has revealed that the treatment considerably decreased fat thickness and improved skin stiffness in the treated region. Subcutaneous fat volume, measured by low‐dose CT, displayed a moderate decrease in the waist region. The combined 1064 nm Nd:YAG and 2940 nm Er:YAG laser treatment results in the reduction of fat tissue and tightens the skin as confirmed by objective measurements.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号