Small animal deep‐tissue fluorescence imaging in the second Biological Window (II‐BW, 1000–1350 nm) is limited by the presence of undesirable infrared‐excited, infrared‐emitted (900–1700 nm) autofluorescence whose origin, spectral properties and dependence on strains is still unknown. In this work, the infrared autofluorescence and laser‐induced whole body heating of five different mouse strains with distinct coat colors (black, grey, agouti, white and nude) has been systematically investigated. While neither the spectral properties nor the magnitude of organ autofluorescence vary significantly between mouse strains, the coat color has been found to strongly determine both the autofluorescence intensity as well as the laser‐induced whole body heating. Results included in this work reveal mouse strain as a critical parameter that has to be seriously considered in the design and performance of small animal imaging experiments based on infrared‐emitting fluorescent markers.
Screening of proteins for crystallization under laser irradiation was investigated using six proteins: ribonuclease B, glucose dehydrogenase, lysozyme, sorbitol dehydrogenase, fructose dehydrogenase and myoglobin. Shining 532 nm green circularly polarized laser light with a picosecond pulse and 6 mW power for 30 s on newly set‐up protein drops showed a marked improvement in the number of screen conditions amenable for crystal growth compared with control drops under identical conditions but without laser exposure. For glucose dehydrogenase and sorbitol dehydrogenase, larger and better quality crystals were formed and the resolution of X‐ray diffraction was improved. The speed of crystallization increased in the case of ribonuclease B, lysozyme and sorbitol dehydrogenase. During laser irradiation, the amount of precipitation in the screened drops increased, indicating a transient decrease in protein solubility. At the optimized laser settings, there was no deleterious effect of the laser on crystal growth or on the protein. In the cases of ribonuclease B and lysozyme the crystal packing did not change owing to the laser exposure. 相似文献
Dental caries usually occurs at interproximal and occlusal surfaces. The purpose of the present study was to determine if characteristic spectral factors extracted from autofluorescence (AF) spectra are informative regarding caries detection and the determination of caries stage as compared with DIAGNOdent results. AF spectra were obtained from caries lesions of different severities at two locations using a 405 nm laser. Three spectral factors, that is, spectral slope at 550 to 600 nm, spectral area under the curve at 500 to 590 nm and two‐peak ratio between 625 and 667 nm, were extracted. The values of three spectral factors linearly decreased as caries progressed. According to micro‐CT images, conventional visual and tactile inspections of lesions under or overestimated (25%‐65%) caries states, and brown or thickly stained layer on interproximal or occlusal surfaces, respectively, caused misclassifications of caries stage. Of the spectral factors examined, spectral slope and area under curve for interproximal and occlusal surfaces, respectively, were found to be significantly related to caries stage and showed least data overlap. For interproximal and occlusal surfaces, DIAGNOdent readings of different stages overlapped considerably though their mean values were significantly different regardless of stage. 相似文献
Collagen‐induced arthritis (CIA) is an animal model for rheumatoid arthritis (RA). Lipopolysaccharide (LPS) is known to accelerate CIA; however, the pathogenetic mechanisms are not yet fully understood. In this study, type II collagen (CII)‐immunized mice were found to have marked increases in degree of expression of mRNA of inflammatory mediators such as tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, and macrophage inflammatory protein‐2 (MIP‐2) in their arthritic paws and of serum anti‐CII antibody concentration before the onset of arthritis induced by LPS injection. The gene expression was rapid and continuous after direct activation of nuclear factor κB. The amounts of mRNA of TNF‐α, IL‐1β, and MIP‐2, as well as of matrix metalloproteinases and the receptor activator of nuclear factor κB ligand, increased with the development of arthritis, correlated positively with clinical severity and corresponded with histopathological changes. Moreover, anti‐TNF‐α neutralizing antibody inhibited the development of LPS‐accelerated CIA and a single injection of recombinant mouse TNF‐α induced increases in anti‐CII antibody concentrations, suggesting TNF‐α may contribute to the development of arthritis by both initiation of inflammation and production of autoantibodies. These data suggest that exacerbation of RA by LPS is associated with rapid and continuous production of inflammatory mediators and autoantibodies. 相似文献
Collagen-induced arthritis (CIA) is an experimental model of rheumatoid arthritis (RA) and has helped researchers to analyze the pathogenesis of inflammatory joint disease. In classical CIA, Freund's complete adjuvant (FCA), which contains heat-killed Mycobacterium tuberculosis, is used as an adjuvant. In our previous study, we reported that particles of beta-glucan, OX-CA, derived from Candida albicans, acted as a proper adjuvant in the CIA model. In this study, to establish pure beta-glucan as an adjuvant for CIA, we tested a commercially available preparation of Zymosan A (ZYM) and modified its products. beta-Glucan fractions of ZYM were prepared by oxidation with various concentrations of NaClO. The oxidized ZYM (OX-ZYM) was mainly composed of beta-glucan. In this study, we examined its effect as an adjuvant for CIA. DBA/1 mice injected with CII and OX-CA developed arthritis 7-10 days after receiving booster injections; the OX-ZYM fractions induced arthritis with the same time course. 0.01% OX-ZYM (oxidized with a 0.01% NaClO solution) caused arthritis faster than 0.1% OX-ZYM or 0.5% OX-ZYM. In conclusion, beta-glucan derived from ZYM by brief oxidation with NaClO is a suitable adjuvant for a CIA model with anti-CII antibody production. 相似文献
Dendritic cells (DCs) retrovirally transduced with IL-4 have recently been shown to inhibit murine collagen-induced arthritis and associated Th1 immune responses in vivo, but the mechanisms that underly these effects are not yet understood. In this report we demonstrate that IL-4-transduced DCs loaded with antigen led to lower T cell production of IFN-gamma, increased production of IL-4, and an attenuated, delayed type hypersensitivity response. We hypothesized that the ability of such DCs to regulate the Th1 immune response in vivo depends in part on their capacity to produce IL-12 and IL-23. Quantitative mRNA analysis revealed that IL-4-transduced DCs stimulated with CD40 ligand expressed higher levels of IL-12p35 mRNA, but lower levels of mRNA for IL-23p19 and the common subunit p40 found in both IL-12 and IL-23, compared with control DCs. These results, which indicate that expression of the IL-12 and IL-23 subunits is differentially regulated in IL-4-transduced DCs, were confirmed by ELISA of the IL-12 and IL-23 heterodimers. Thus, therapeutic suppression of Th1 -mediated autoimmunity (as recently shown in murine collagen-induced arthritis) and induction of Th2 responses in vivo by IL-4-transduced DCs occurs despite their potential to produce increased levels of IL-12, but could reflect, in part, decreased production of IL-23. 相似文献
Plants are one of the most important parts of the ecological system and demand a reliable method for accurate classification. In this study, the first‐derivative fluorescence spectral curves (FDFSCs) based on laser‐induced fluorescence technology were proposed for the characterization of plant species. The measurement system is mainly composed of a spectrometer, an excitation light source (the two excitation wavelengths are 460 and 556 nm, respectively), and an intensified charge‐coupled device camera. FDFSCs were calculated from the deviation between the fluorescence values at each wavelength, plus and minus one band, divided by the wavelength range. Principal component analysis was utilized to analyze the FDFSCs by extracting the main attributes and reducing the dimensionality of variables. A support vector machine was used to evaluate FDFSC performance for the identification of plant species. Plant species that are difficult to distinguished by the naked eye, can be identified effectively using the proposed FDFSCs. For the 556 nm and 460 nm excitation wavelengths, the overall identification rates of the six plant species evaluated were 93.3% and 91.7%, respectively. Experimental results demonstrated that the combination of the FDFSCs with multivariate analysis could provide a simple and reliable method for the characterization of plant species. 相似文献
A flow cytometer coupled to a scanning monochromator and a fluorescence microscope were used to characterize the fluorescence spectrum of Pseudo‐nitzschia multiseries (Hasle) Hasle, a pennate diatom that produces the neurotoxin domoic acid, a lethal amnesic. In this research, we characterize the fluorescence spectrum of P. multiseries in vivo over the wavelength range of 360 to 850 nm and show that this diatom autofluoresces blue when excited with UV light (350–365 nm). The autofluorescence characterization of Pseudo‐nitzschia may provide new methods for rapid in situ monitoring of diatom populations and reiterates the usefulness of flow cytometry in the analysis and study of marine phytoplankton. 相似文献