首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nasopharyngeal cancer (NPC) is an endemic with high incidence in Southern China and Southeast Asia countries. Screening for NPC under conventional white light imaging (WLI) nasopharyngoscope examination remains a great clinical challenge due to its poor sensitivity. Here, we developed an integrated 4‐modality endoscopy system combining WLI, autofluorescence imaging (AFI), diffuse reflectance spectroscopy and Raman spectroscopy technologies for in vivo endoscopic cancer detection for the first time. A pilot clinical test of the system for NPC detection was conducted, in which 283 in vivo Raman and diffuse reflectance spectral data sets from 30 NPC patients and 30 healthy subjects were acquired under the guidance of AFI and WLI. Both high diagnostic sensitivity (98.6%) and high specificity (95.1%) for differentiating cancer from normal tissue sites were achieved using this system combined with principal component analysis‐linear discriminant analysis diagnostic algorithm, demonstrating great potential for improving real‐time, in vivo diagnosis of NPC at endoscopy.   相似文献   

2.
Multispectral and hyperspectral imaging (HSI) are emerging optical imaging techniques with the potential to transform the way surgery is performed but it is not clear whether current systems are capable of delivering real‐time tissue characterization and surgical guidance. We conducted a systematic review of surgical in vivo label‐free multispectral and HSI systems that have been assessed intraoperatively in adult patients, published over a 10‐year period to May 2018. We analysed 14 studies including 8 different HSI systems. Current in‐vivo HSI systems generate an intraoperative tissue oxygenation map or enable tumour detection. Intraoperative tissue oxygenation measurements may help to predict those patients at risk of postoperative complications and in‐vivo intraoperative tissue characterization may be performed with high specificity and sensitivity. All systems utilized a line‐scanning or wavelength‐scanning method but the spectral range and number of spectral bands employed varied significantly between studies and according to the system's clinical aim. The time to acquire a hyperspectral cube dataset ranged between 5 and 30 seconds. No safety concerns were reported in any studies. A small number of studies have demonstrated the capabilities of intraoperative in‐vivo label‐free HSI but further work is needed to fully integrate it into the current surgical workflow.   相似文献   

3.
Raman spectroscopy has becoming a practical tool for rapid in vivo tissue diagnosis. This paper provides an overview on the latest development of real‐time in vivo Raman systems for cancer detection. Instrumentation, data handling, as well as oncology applications of Raman techniques were covered. Optic fiber probes designs for Raman spectroscopy were discussed. Spectral data pre‐processing, feature extraction, and classification between normal/benign and malignant tissues were surveyed. Applications of Raman techniques for clinical diagnosis for different types of cancers, including skin cancer, lung cancer, stomach cancer, oesophageal cancer, colorectal cancer, cervical cancer, and breast cancer, were summarized.

Schematic of a real‐time Raman spectrometer for skin cancer detection. Without correction, the image captured on CCD camera for a straight entrance slit has a curvature. By arranging the optic fiber array in reverse orientation, the curvature could be effectively corrected.  相似文献   


4.
In this study, we developed a dual‐modality tomographic system that integrated photoacoustic imaging (PAI) and diffuse optical tomography (DOT) into a single platform for imaging human finger joints with fine structures and associated optical properties. In PAI, spherical focused transducers were utilized to collect acoustic signals, and the concept of virtual detector was applied in a conventional back‐projection algorithm to improve the image quality. A finite‐element based reconstruction algorithm was employed to quantitatively recover optical property distribution in the objects for DOT. The phantom results indicate that PAI has a maximum lateral resolution of 70 µm in resolving structures of targets. DOT was able to recover both optical absorption and reduced scattering coefficients of targets accurately. To validate the potential of this system in clinical diagnosis of joint diseases, the distal interphalangeal (DIP) joints of 4 healthy female volunteers were imaged. We successfully obtained high‐resolution images of the phalanx and the surrounding soft tissue via PAI, and recovered both optical absorption and reduced scattering coefficients of phalanx using DOT. The in vivo results suggest that this dual‐modality system has the potential for the early diagnosis of joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA).

Integrated PAI/DOT imaging interface (top) and typical reconstruction of structures and associated optical properties of a female finger joint via PAI and DOT (bottom).  相似文献   


5.
Corneal water content and hydrodynamics are critical indicators of eye health. In this work, a convenient method based on near‐infrared absorption spectroscopy (NIRA) was presented to measure the relative water content of the corneal stroma ex vivo, which paves the way to measure corneal water content in vivo. The relative water content of fresh corneal stroma during dehydration under natural conditions (temperature, 25.8 ± 0.3°C; humidity, 7.2% ± 0.9%) was monitored in real time, and the characteristic time τ when the relative water content dropped to 90% of the fresh corneal stroma was 140.1 ± 30.6 s. Furthermore, the change in the relative water content over time was found to be linear with a dehydration rate of 0.071% per second, consistent with indirect optical coherence pachymetry but with superior reproducibility and precision. Provided that the NIRA spectrometer is changed to a reflection structure from the current transmission configuration, the NIRA method proposed in this work has great potential for in vivo measurement with the advantages of non‐contact, high precision and low cost.  相似文献   

6.
We present an in vivo lab‐free full‐field functional optical hemocytometer (FFOH) for application to the capillaries of a live biological specimen, based on the absorption intensity fluctuation modulation (AIFM) effect. Because of the absorption difference between the red blood cells (RBCs) and background tissue under low‐coherence light illumination, an endogenous instantaneous intensity fluctuation is generated by the AIFM effect when RBCs discontinuously traverse the capillary. The AIFM effect is used to highlight the RBC signal relative to the background tissue by computing the real‐time modulation depth. FFOH can simultaneously provide a flow video, the flow velocity and the RBC count. Ourexperimental results can potentially be applied to study the physiological mechanisms of the blood circulation systems of near‐transparent live biological samples.   相似文献   

7.
Colorectal cancer can be prevented if detected early (e.g., precancerous polyps‐adenoma). Endoscopic differential diagnosis of hyperplastic polyps (that have little or no risk of malignant transformation) and adenomas (that have prominent malignant latency) remains an unambiguous clinical challenge. Raman spectroscopy is an optical vibrational technique capable of probing biomolecular changes of tissue associated with neoplastic transformation. This work aims to apply a fiber‐optic simultaneous fingerprint (FP) and high wavenumber (HW) Raman spectroscopy technique for real‐time in vivo assessment of adenomatous polyps during clinical colonoscopy. We have developed a fiber‐optic Raman endoscopic technique capable of simultaneously acquiring both the FP (i.e., 800–1800 cm–1) and HW (i.e., 2800–3600 cm–1) Raman spectra from colorectal tissue subsurface (<200 µm) for real‐time assessment of colorectal carcinogenesis. In vivo FP/HW Raman spectra were acquired from 50 patients with 17 colorectal polyps during clinical colonoscopy. Prominent Raman spectral differences (p < 0.001) were found between hyperplastic (n = 118 spectra), adenoma (n = 184 spectra) that could be attributed to changes in inter‐ and intra‐cellular proteins, lipids, DNA and water structures and conformations. Simultaneous FP/HW Raman endoscopy provides a diagnostic sensitivity of 90.9% and specificity of 83.3% for differentiating adenoma from hyperplastic polyps, which is superior to either the FP or HW Raman technique alone. This study shows that simultaneous FP/HW Raman spectroscopy technique has the potential to be a clinically powerful tool for improving early diagnosis of adenomatous polyps in vivo during colonoscopic examination.

  相似文献   


8.
A compact high‐speed full‐field optical coherence microscope has been developed for high‐resolution in vivo imaging of biological tissues. The interferometer, in the Linnik configuration, has a size of 11 × 11 × 5 cm3 and a weight of 210 g. Full‐field illumination with low‐coherence light is achieved with a high‐brightness broadband light‐emitting diode. High‐speed full‐field detection is achieved by using part of the image sensor of a high‐dynamic range CMOS camera. En face tomographic images are acquired at a rate of 50 Hz, with an integration time of 0.9 ms. The image spatial resolution is 0.9 μm × 1.2 μm (axial × transverse), over a field of view of 245 × 245 μm2. Images of human skin, revealing in‐depth cellular‐level structures, were obtained in vivo and in real‐time without the need for stabilization of the subject. The system can image larger fields, up to 1 × 1 mm2, but at a reduced depth.   相似文献   

9.
An integrated 4‐modality endoscopy system combining white light imaging, autofluorescence imaging, diffuse reflectance spectroscopy and Raman spectroscopy technologies was developed for in vivo endoscopic nasopharyngeal cancer detection. Both high diagnostic sensitivity (98.6%) and high specificity (95.1%) for differentiating cancer from normal tissue sites were achieved using this system combined with multivariate diagnostic algorithm, demonstrating great potential for improving real‐time, in vivo diagnosis of cancer at endoscopy. Further details can be found in the article by Duo Lin et al. ( e201700251 )

  相似文献   


10.
Intraoperative Cerenkov luminescence imaging (CLI) can effectively improve the performance of tumor surgery. Nevertheless, the existing approaches are still unsatisfying to the clinical demands of open surgery. This study develops a novel intraoperative in vivo CLI approach to investigate the potential and value of Cerenkov luminescence (CL) image‐guided surgery. A system characterized with high sensitivity (19.61 kBq mL?1 18F‐FDG) and desirable spatial resolution (88.34 μm) is developed. CL image‐guided surgery is performed on colorectal cancer (CRC) models of mice and swine. Tumor surgery is guided by the static CL images, and the resection quality is evaluated quantitatively and contrasted with other imaging modalities exemplified by bioluminescence imaging (BLI). The in vivo results demonstrated the effectiveness of the proposed intraoperative CLI approach for removing primary and metastatic CRC. Safety of performing in vivo CL image‐guided surgery is verified as well through radiation measurements of related staffs. Overall, the developed intraoperative in vivo CLI approach can efficiently improve the cancer treatment.  相似文献   

11.
Navigation‐guided brain biopsies are the standard of care for diagnosis of several brain pathologies. However, imprecise targeting and tissue heterogeneity often hinder obtaining high‐quality tissue samples, resulting in poor diagnostic yield. We report the development and first clinical testing of a navigation‐guided fiberoptic Raman probe that allows surgeons to interrogate brain tissue in situ at the tip of the biopsy needle prior to tissue removal. The 900 μm diameter probe can detect high spectral quality Raman signals in both the fingerprint and high wavenumber spectral regions with minimal disruption to the neurosurgical workflow. The probe was tested in three brain tumor patients, and the acquired spectra in both normal brain and tumor tissue demonstrated the expected spectral features, indicating the quality of the data. As a proof‐of‐concept, we also demonstrate the consistency of the acquired Raman signal with different systems and experimental settings. Additional clinical development is planned to further evaluate the performance of the system and develop a statistical model for real‐time tissue classification during the biopsy procedure.   相似文献   

12.
We applied our multimodal nonlinear spectral imaging microscope to the measurement of rat cornea. We successfully obtained multiple nonlinear signals of coherent anti‐Stokes Raman scattering (CARS), third‐order sum frequency generation (TSFG), and second harmonic generation (SHG). Depending on the nonlinear optical processes, the cornea tissue was visualized with different image contrast mechanism simultaneously. Due to white‐light laser excitation, multiplex CARS and TSFG spectra were obtained. Combined multimodal and spectral analysis clearly elucidated the layered structure of rat cornea with molecular structural information. This study indicates that our multimodal nonlinear spectral microscope is a promising bioimaging method for tissue study.

Multimodal nonlinear spectral images of rat cornea at corneal epithelium and corneal stroma in the in‐plane (XY) direction. With use of the combinational analysis of different nonlinear optical processes, detailed molecular structural information is available without staining or labelling.  相似文献   


13.
Monitoring the blood‐brain barrier (BBB) permeability plays a key role in assessing drug release with high resolution. In this work, with the help of optical clearing skull window, we not only realized non‐invasive BBB opening by photodynamic therapy, but also developed a method based on spectral‐imaging to in vivo dynamically monitor the changes in BBB permeability. Further details can be found in the article by Wei Feng, Chao Zhang, Tingting Yu, et al. ( e201800330 ).

  相似文献   


14.
Endovenous laser therapy (ELT) was introduced in clinical practice for treating incompetent veins about fifteen years ago. Despite the considerable clinical evidence collected so far, no rigorous guidelines are yet available regarding the optimal energy deposition protocols while incidence of recanalization, lack of vessel occlusion and collateral damage remains variable among patients. Online monitoring and feedback‐based control over the lesion progression may improve clinical outcomes. Yet the currently employed monitoring tools, such as Doppler ultrasound, often do not provide sufficient contrast as well as three‐dimensional imaging capacity for accurate lesion assessment during thermal treatments. Here we investigate on the utility of volumetric optoacoustic tomography for real‐time monitoring of the ELT procedures. Experiments performed in subcutaneous veins of an ox foot model revealed the accurate spatio‐temporal maps of the lesion progression and characteristics of the vessel wall. Optoacoustic images further correlated with the temperature elevation measured in the area adjacent to the coagulation spot and made it possible to track the position of the fiber tip during its pull back in real time and in all three dimensions. Overall, we showcase that volumetric optoacoustic tomography is a promising tool for providing online feedback during endovenous laser therapy.

  相似文献   


15.
Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme‐coated microelectrodes and the risk for light‐induced artifacts. In this study, we establish a method for the combination of in vivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme‐coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN ), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinson′s disease, has recently proven opotogenetically targetable in Pitx2‐Cre‐transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2‐eYFP constructs into the STN , amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi‐step analysis approach based on self‐referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of in vivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate‐based approaches in neuroscience.

  相似文献   

16.
Tissue engineering/regenerative medicine (TERM) is an interdisciplinary field that applies the principle of engineering and life sciences to restore/replace damaged tissues/organs with in vitro artificially‐created ones. Research on TERM quickly moves forward. Today newest technologies and discoveries, such as 3D‐/bio‐printing, allow in vitro fabrication of ex‐novo made tissues/organs, opening the door to wide and probably never‐ending application possibilities, from organ transplant to drug discovery, high content screening and replacement of laboratory animals. Imaging techniques are fundamental tools for the characterization of tissue engineering (TE) products at any stage, from biomaterial/scaffold to construct/organ analysis. Indeed, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular features, allowing three‐dimensional (3D) and time‐lapse in vivo analysis, in a non‐destructive, quantitative, multidimensional analysis of TE constructs, to analyze their pre‐implantation quality assessment and their fate after implantation. This review focuses on the newest developments in imaging technologies and applications in the context of requirements of the different steps of the TERM field, describing strengths and weaknesses of the current imaging approaches.

  相似文献   


17.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

18.
The newly developed Raman ChemLighter allows the real‐time acquisition of spectroscopic data using a handheld probe. By intelligently combining the fiber‐based imaging approach with computational modeling, we can directly extract molecular information of a sample provide augmented chemical reality to visualize chemistry. Further details can be found in the article by Wei Yang, Abdullah S. Mondol, Clara Stiebing, Laura Marcu, Jürgen Popp, Iwan W. Schie ( e201800447 ).

  相似文献   


19.
Optical‐resolution photoacoustic microscopy (OR‐PAM) has been shown to be an excellent imaging modality for monitoring and study of tumor microvasculature. However, previous studies focused mainly on the normal tissues and did not quantify the tumor microvasculature. In this study, we present an in vivo OR‐PAM imaging of the melanomas and hepatoma implanted in the mouse ear. We quantify the vessel growth by extracting the skeletons of both dense and thin branches of the tumor microvasculature obtained by Hessian matrix enhancement followed by improved two‐step multistencils fast marching method. Compared with the previous methods of using OR‐PAM for normal tissues, our method was more effective in extracting the binary vascular network in the tumor images and in obtaining the complete and continuous microvascular skeleton maps. Our demonstration of using OR‐PAM in improving microvasculature of tumors and quantification of tumor growth would push deep this technology for the early diagnosis and treatment of cancers.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号