首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Class I major histocompatibility complex (MHC) molecules bind peptides derived from degraded proteins for display to T cells of the immune system. Peptides bind to MHC proteins with varying affinities, depending upon their sequence and length. We demonstrate that the thermal stability of the MHC-peptide complex depends directly on peptide binding affinity. We use this correlation to develop a convenient method to determine peptide dissociation constants by measuring MHC-peptide complex stability using thermal denaturation profiles monitored by circular dichroism.  相似文献   

2.
The ribosome is a ribozyme. However, in bacterial ribosomes, the N‐terminus of L27 is located within the peptidyl transfer center. The roles of this protein in real time remain unclear. We present single‐molecule fluorescence resonance energy transfer (FRET) studies of tRNA dynamics at the peptidyl transfer center in ribosomes containing either wild type (WT) L27, or L27 mutants with A2H3, A2H3K4 or nine N‐terminal residues removed. Removing L27's first three N‐terminal residues or mutating a single residue, K4, reduces the formation of a stable peptidyl tRNA after translocation. These results imply that L27 stabilizes the peptidyl tRNA and residue K4 contributes significantly to the stabilization.  相似文献   

3.
Bai H  Yang K  Yu D  Zhang C  Chen F  Lai L 《Proteins》2011,79(3):720-734
Elucidating kinetic processes of protein–protein interactions (PPI) helps to understand how basic building blocks affect overall behavior of living systems. In this study, we used structure‐based properties to build predictive models for kinetic constants of PPI. A highly diverse PPI dataset, protein–protein kinetic interaction data and structures (PPKIDS), was built. PPKIDS contains 62 PPI with complex structures and kinetic constants measured experimentally. The influence of structural properties on kinetics of PPI was studied using 35 structure‐based features, describing different aspects of complex structures. Linear models for the prediction of kinetic constants were built by fitting with selected subsets of structure‐based features. The models gave correlation coefficients of 0.801, 0.732, and 0.770 for koff, kon, and Kd, respectively, in leave‐one‐out cross validations. The predictive models reported here use only protein complex structures as input and can be generally applied in PPI studies as well as systems biology modeling. Our study confirmed that different properties play different roles in the kinetic process of PPI. For example, kon was affected by overall structural features of complexes, such as the composition of secondary structures, the change of translational and rotational entropy, and the electrostatic interaction; while koff was determined by interfacial properties, such as number of contacted atom pairs per 100 Å2. This information provides useful hints for PPI design. Proteins 2010;79:720–734. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single‐molecule Förster resonance energy transfer (smFRET) of surface‐immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein‐induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA ‐ NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA ‐ protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites (“slow” trajectories) or by semi‐specific interactions of two DNA‐bound NgoMIV tetramers (“fast” trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules.  相似文献   

5.
Protein localization in living cells and tissues using FRET and FLIM   总被引:8,自引:0,他引:8  
Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.  相似文献   

6.
Kinetic measurement of protein folding is limited by the method used to trigger folding. Traditional methods, such as stopped flow, have a long mixing dead time and cannot be used to monitor fast folding processes. Here, we report a compound, 4‐(bromomethyl)‐6,7‐dimethoxycoumarin, that can be used as a “photolabile cage” to study the early stages of protein folding. The folding process of a protein, RD1, including kinetics, enthalpy, and volume change, was studied by the combined use of a phototriggered caging strategy and time‐resolved photoacoustic calorimetry. The cage caused unfolding of the photolabile protein, and then a pulse UV laser (~10?9 s) was used to break the cage, leaving the protein free to refold and allowing the resolving of two folding events on a nanosecond time scale. This strategy is especially good for monitoring fast folding proteins that cannot be studied by traditional methods. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
We introduce a simple new approach for time‐resolved multiplexed analysis of complex systems using near‐infrared (NIR) dyes, applicable to in vitro and in vivo studies. We show that fast and precise in vitro quantification of NIR fluorophores' short (subnanosecond) lifetime and stoichiometry can be done using phasor analysis, a computationally efficient and user‐friendly representation of complex fluorescence intensity decays obtained with pulsed laser excitation and time‐gated camera imaging. We apply this approach to the study of binding equilibria by Förster resonant energy transfer using two different model systems: primary/secondary antibody binding in vitro and ligand/receptor binding in cell cultures. We then extend it to dynamic imaging of the pharmacokinetics of transferrin engagement with the transferrin receptor in live mice, elucidating the kinetics of differential transferrin accumulation in specific organs, straightforwardly differentiating specific from nonspecific binding. Our method, implemented in a freely‐available software, has the advantage of time‐resolved NIR imaging, including better tissue penetration and background‐free imaging, but simplifies and considerably speeds up data processing and interpretation, while remaining quantitative. These advances make this method attractive and of broad applicability for in vitro and in vivo molecular imaging and could be extended to applications as diverse as image‐guided surgery or optical tomography.   相似文献   

8.
Continuous monitoring of glucose and sugar sensing plays a vital role in diabetes control. The drawbacks of the present enzyme‐based sugar sensors have encouraged the investigation into alternate approaches to design new sensors. The popularity of fluorescence sensors is due to their ability to bind reversibly to compounds containing diol. In this study we investigated the binding ability of phenyl boronic acid P1 for monosaccharides and disaccharides (sugars) in aqueous medium at physiological pH 7.4 using steady‐state fluorescence and absorbance. P1 fluorescence was quenched due to formation of esters with sugars. Absorbance and fluorescence measurements led to results that indicated that the sugars studied could be ordered in terms of their affinity to P1, as stated: sucrose > lactose > galactose > xylose > ribose > arabinose. In each case, the slope of modified Stern–Volmer plots was nearly 1, indicating the presence of only a single binding site in boronic acids for sugars. Docking studies were carried out using Schrodinger Maestro v.11.2 software. The binding affinity of phenyl boronic acid P1 with periplasmic protein (PDB ID 2IPM and 2IPL) was estimated using GlideScore.  相似文献   

9.
Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein‐protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero‐FRET and homo‐FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z ′ factors exceeding 0.6 are realised for this FLIM FRET assay. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The detection of protein-protein binding on microarrays using the fluorescence lifetime as a dynamic analytical parameter was investigated in a model system. The assay is based on F?rster resonance energy transfer (FRET) and carried out with biotinylated Bovine Serum Albumin and streptavidin, labeled with the commonly used microarray dyes Alexa 555 and Alexa 647, respectively. This efficient FRET donor/acceptor pair was employed in a competitive assay format on three different microarray surfaces. The fluorescence was excited by 200ps laser pulses from a mode-locked and cavity-dumped argon-ion laser, adapted to an intensified CCD camera as detection unit allowing time resolution with subnanosecond precision. Lifetime maps were recorded according to the Rapid Lifetime Determination (RLD) scheme. Interaction between the proteins could clearly be detected on all formats and resulted in almost complete quenching on CEL Epoxy surfaces upon addition of excess streptavidin labeled the FRET acceptor dye. In this case, the fluorescence lifetimes dropped by 90%, whereas on ARChip Epoxy and ARChip Gel the reduction was 54% and 47%, respectively. Good linearity of the quenching curve was obtained in all cases. The method is applicable to all types of protein interaction analysis on microarrays, particularly in cases where evaluation of fluorescence intensity is prone to erroneous results and a more robust parameter is required.  相似文献   

11.
12.
13.
In biology, the researcher often manipulates some variables of a system and observes its other variables, or investigates relationships among naturally occurring variable values. The studied variables are often measured at equilibrium. It is therefore important to know what we can learn from these equilibrium values and how much information they provide about the fundamental properties of the system. We argue that this information is very limited and that statistical relationships that include equilibrium values may lead to grossly incorrect inferences. A number of simple systems are discussed in order to provide examples of such inferential errors and advice is given about how to avoid them in practice. In conclusion, the potential importance of measure theory in biological sciences in considered.  相似文献   

14.
《Luminescence》2002,17(2):123-129
Verotoxin (VT) produced by several Escherichia coli serotypes causes haemorrhagic colitis and has been associated with haemolytic uraemic syndrome in humans. Two types of verotoxin are known. Conventional diagnosis of verotoxin‐producing Escherichia coli (VTEC) is conducted after isolation of bacteria from clinical specimens, followed by serological determination and identification of VTs. This method is complicated and time‐consuming. Recently, rapid, direct immunological methods for identification of VTEC, i.e. immunochromatography and latex agglutination, have been developed. However, these techniques continue to suffer from limited sensitivity and a lack of specificity. These difficulties arise from the fact that the antibody used in these procedures reacts exclusively with the O157 antigen; moreover, VTEC strains with non‐O157 antigens, such as O26, O103 and O111 antigens, exist. These VTEC groups did not react with anti‐O157 antibody. Consequently, it is necessary to diagnose the VT gene in these bacteria. Therefore, we have designed a sensitive and specific method for the detection of two VT genes simultaneously, utilizing duplex PCR with time‐resolved fluorescence immunoassay (TRFIA). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Cytosolic protein delivery promises diverse applications from therapeutics, to genetic modification and precision research tools. To achieve effective cellular and subcellular delivery, approaches that allow protein visualization and accurate localization with greater sensitivity are essential. Fluorescently tagging proteins allows detection, tracking and visualization in cellulo. However, undesired consequences from fluorophores or fluorescent protein tags, such as nonspecific interactions and high background or perturbation to native protein''s size and structure, are frequently observed, or more troublingly, overlooked. Distinguishing cytosolically released molecules from those that are endosomally entrapped upon cellular uptake is particularly challenging and is often complicated by the inherent pH‐sensitive and hydrophobic properties of the fluorophore. Monitoring localization is more complex in delivery of proteins with inherent protein‐modifying activities like proteases, transacetylases, kinases, etc. Proteases are among the toughest cargos due to their inherent propensity for self‐proteolysis. To implement a reliable, but functionally silent, tagging technology in a protease, we have developed a caspase‐3 variant tagged with the 11th strand of GFP that retains both enzymatic activity and structural characteristics of wild‐type caspase‐3. Only in the presence of cytosolic GFP strands 1–10 will the tagged caspase‐3 generate fluorescence to signal a non‐endosomal location. This methodology facilitates easy screening of cytosolic vs. endosomally‐entrapped proteins due to low probabilities for false positive results, and further, allows tracking of the resultant cargo''s translocation. The development of this tagged casp‐3 cytosolic reporter lays the foundation to probe caspase therapeutic properties, charge–property relationships governing successful escape, and the precise number of caspases required for apoptotic cell death.  相似文献   

16.
17.
The human zinc‐ and iron‐regulated transport protein 4 (hZIP4) protein is the major plasma membrane protein responsible for the uptake of zinc in the body, and as such it plays a key role in cellular zinc homeostasis. hZIP4 plasma membrane levels are regulated through post‐translational modification of its large, disordered, histidine‐rich cytosolic loop (ICL2) in response to intracellular zinc concentrations. Here, structural characteristics of the isolated disordered loop region, both in the absence and presence of zinc, were investigated using nuclear magnetic resonance (NMR) spectroscopy. NMR chemical shifts, coupling constants and temperature coefficients of the apoprotein, are consistent with a random coil with minor propensities for transient polyproline Type II helices and β‐strand in regions implicated in post‐translational modifications. The ICL2 protein remains disordered upon zinc binding, which induces exchange broadening. Paramagnetic relaxation enhancement experiments reveal that the histidine‐rich region in the apoprotein makes transient tertiary contacts with predicted post‐translational modification sites. The residue‐specific data presented here strengthen the relationship between hZIP4 post‐translational modifications, which impact its role in cellular zinc homeostasis, and zinc sensing by the intracellular loop. Furthermore, the zinc sensing mechanism employed by the ICL2 protein demonstrates that high‐affinity interactions can occur in the presence of conformational disorder.  相似文献   

18.
19.
Although some studies have shown that the cell penetrating peptide (CPP) TAT can enter a variety of cell lines with high efficiency, others have observed little or no transduction in vivo or in vitro under conditions mimicking the in vivo environment. The mechanisms underlying TAT‐mediated transduction have been investigated in cell lines, but not in primary brain cells. In this study we demonstrate that transduction of a green fluorescent protein (GFP)‐TAT fusion protein is dependent on glycosaminoglycan (GAG) expression in both the PC12 cell line and primary astrocytes. GFP‐TAT transduced PC12 cells and did so with even higher efficiency following NGF differentiation. In cultures of primary brain cells, TAT significantly enhanced GFP delivery into astrocytes grown under different conditions: (1) monocultures grown in serum‐containing medium; (2) monocultures grown in serum‐free medium; (3) cocultures with neurons in serum‐free medium. The efficiency of GFP‐TAT transduction was significantly higher in the monocultures than in the cocultures. The GFP‐TAT construct did not significantly enter neurons. Experimental modulation of GAG content correlated with alterations in TAT transduction in PC12 cells and astrocyte monocultures grown in the presence of serum. In addition, this correlation was predictive of TAT‐mediated transduction in astrocyte monocultures grown in serum free medium and in coculture. We conclude that culture conditions affect cellular GAG expression, which in turn dictates TAT‐mediated transduction efficiency, extending previous results from cell lines to primary cells. These results highlight the cell‐type and phenotype‐dependence of TAT‐mediated transduction, and underscore the necessity of controlling the phenotype of the target cell in future protein engineering efforts aimed at creating more efficacious CPPs. Biotechnol. Bioeng. 2009; 104: 10–19 © 2009 Wiley Periodicals, Inc.  相似文献   

20.
We investigated the complex interaction between bovine serum albumin (BSA) and curcumin by combining time‐resolved fluorescence and synchronous fluorescence spectroscopy. The interaction was significant and sensitive to fluorescence lifetime and synchronous fluorescence characteristics. Binding of curcumin significantly shortened the fluorescence lifetime of BSA with a bi‐molecular quenching rate constant of kq = 3.17 × 1012 M‐1s‐1. Denaturation by urea unfolded the protein molecule by quenching the fluorescence lifetime of BSA. The tyrosine synchronous fluorescence spectra were blue shifted whereas the position of tryptophan synchronous fluorescence spectra was red shifted during the unfolding process. However, denaturation of urea had little effect on the synchronous fluorescence peak of tyrosine in curcumin‐BSA complex except in the low concentration range; however, it shifted the peak to the red, indicating that curcumin shifted tryptophan moiety to a more polar environment in the unfolded state. Decreases in the time‐resolved fluorescence lifetime and curcumin‐BSA complex during unfolding were recovered during refolding of BSA by a dilution process, suggesting partial reversibility of the unfolding process for both BSA and curcumin‐BSA complex. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号