首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There remains a great need for diagnosis of inflammatory bowel disease, for which the current technique, colonoscopy, is costly and also has risks for complications. Attenuated total reflectance Fourier transform infrared spectroscopy is a new screening technique to evaluate colitis. Using second derivative spectral deconvolution of the absorbance spectra, a full set of spectral markers were identified based on statistical analysis. Using this method, Amide I group frequencies, (specifically, α‐helix to β‐sheet ratio of the protein secondary structure) were identified in addition to the previously reported glucose and mannose signatures in sera of chronic and acute mice models of colitis. We also used the same technique to demonstrate that these spectral markers (α‐helix/β‐sheet ratio, glucose and mannose) are recovering to basal levels upon anti‐TNFα therapy. Hence, this technique will be able to identify changes in the sera due to diseases.   相似文献   

2.
Glycosaminoglycans (GAGs) are natural, linear and negatively charged heteropolysaccharides which are incident in every mammalian tissue. They consist of repeating disaccharide units, which are composed of either sulfated or non-sulfated monosaccharides. Depending on tissue types, GAGs exhibit structural heterogeneity such as the position and degree of sulfation or within their disaccharide units composition being heparin, heparan sulfate, chondroitine sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. They are covalently linked to a core protein (proteoglycans) or as free chains (hyaluronan). GAGs affect cell properties and functions either by direct interaction with cell receptors or by sequestration of growth factors. These evidences of divert biological roles of GAGs make their characterization at cell and tissue levels of importance. Thus, non-invasive techniques are interesting to investigate, to qualitatively and quantitatively characterize GAGs in vitro in order to use them as diagnostic biomarkers and/or as therapeutic targets in several human diseases including cancer. Infrared and Raman microspectroscopies and imaging are sensitive enough to differentiate and classify GAG types and subtypes in spite of their close molecular structures. Spectroscopic markers characteristic of reference GAG molecules were identified. Beyond these investigations of the standard GAG spectral signature, infrared and Raman spectral signatures of GAG were searched in complex biological systems like cells. The aim of the present review is to describe the implementation of these complementary vibrational spectroscopy techniques, and to discuss their potentials, advantages and disadvantages for GAG analysis. In addition, this review presents new data as we show for the first time GAG infrared and Raman spectral signatures from conditioned media and live cells, respectively.  相似文献   

3.
Dostál L  Chen CY  Wang AH  Welfle H 《Biochemistry》2004,43(30):9600-9609
Members of the Sso7d/Sac7d protein family and other related proteins are believed to play an important role in DNA packaging and maintenance in archeons. Sso7d/Sac7d are small, abundant, basic, and nonspecific DNA-binding proteins of the hyperthermophilic archeon Sulfolobus. Structures of several complexes of Sso7d/Sac7d with DNA octamers are known. These structures are characterized by sequence unspecific minor groove binding of the proteins and sharp kinking of the double helix. Corresponding Raman vibrational signatures have been identified in this study. A Raman spectroscopic analysis of Sac7d binding to the oligonucleotide decamer d(GAGGCGCCTC)(2) reveals large conformational perturbations in the DNA structure upon complex formation. Perturbed Raman bands are associated with the vibrational modes of the sugar phosphate backbone and frequency shifts of bands assigned to nucleoside vibrations. Large changes in the DNA backbone and partial B- to A-form DNA transitions are indicated that are closely associated with C2'-endo/anti to C3'-endo/anti conversion of the deoxyadenosyl moiety upon Sac7d binding. The major spectral feature of Sac7d binding is kinking of the DNA. Raman markers of minor groove binding do not largely contribute to spectral differences; however, clear indications for minor groove binding come from G-N2 and G-N3 signals that are supported by Trp24 features. Trp24 is the only tryptophan present in Sac7d and binds to guanine N3, as has been demonstrated clearly in X-ray structures of Sac7d-DNA complexes. No changes of the Sac7d secondary structure have been detected upon DNA binding.  相似文献   

4.
This study aims to characterize biochemical and morphological variations of the clinically relevant anatomical locations of in vivo oral tissue (ie, alveolar process, lateral tongue and floor of the mouth) by using hybrid Raman spectroscopy (RS) and optical coherence tomography (OCT) technique. A total of 1049 in vivo fingerprint (FP: 800‐1800 cm?1) and high wavenumber (HW: 2800‐3600 cm?1) Raman spectra were acquired from different oral tissue (alveolar process = 331, lateral tongue = 339 and floor of mouth = 379) of 26 normal subjects in the oral cavity under the OCT imaging guidance. The total Raman dataset were split into 2 parts: 80% for training and 20% for testing. Tissue optical attenuation coefficients of alveolar process, lateral tongue and the floor of the mouth were derived from OCT images, revealing the inter‐anatomical morphological differences; while RS uncovers subtle FP/HW Raman spectral differences among different oral tissues that can be attributed to the differences in inter‐ and intra‐cellular proteins, lipids, DNA and water structures and conformations, enlightening biochemical variability of different oral tissues at the molecular level. Partial least squares‐discriminant analysis implemented on the training dataset show that the integrated tissue optical attenuation coefficients and FP/HW Raman spectra provide diagnostic sensitivities of 99.6%, 82.3%, 50.2%, and specificities of 97.0%, 75.1%, 92.1%, respectively, which are superior to using either RS (sensitivities of 90.2%, 77.5%, 48.8%, and specificities of 95.8%, 72.1%, 88.8%) or optical attenuation coefficients derived from OCT (sensitivities of 75.0%, 78.2%, 47.2%, and specificities of 96.2%, 67.7%, 85.0%) for the differentiation among alveolar process, lateral tongue and the floor of the mouth. Furthermore, the diagnostic algorithms applied to the independent testing dataset based on hybrid RS‐OCT technique gives predictive diagnostic sensitivities of 100%, 76.5%, 51.3%, and specificities of 95.1%, 77.6%, 89.6%, respectively, for the classifications among alveolar process, lateral tongue and the floor of the mouth, which performs much better than either RS or optical attenuation coefficient derived from OCT imaging. This work suggests that inter‐anatomical morphological and biochemical variability are significant which should be considered as an important parameter in the interpretation and rendering of hybrid RS‐OCT technique for oral tissue diagnosis and characterization.   相似文献   

5.
Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air‐blood barrier formation. Here, linear Raman and coherent anti‐Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI‐like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three‐dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label‐free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.   相似文献   

6.
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti‐CF and anti‐enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti‐CF and antitoxin immunogenicity was then assessed. To achieve high‐level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti‐CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
  相似文献   

7.
A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM‐SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2‐mm deep into strong scattering media (lard) to acquire up to a 14‐fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6‐mm thick brain tissue layer. This depth resolved label‐free multimodal approach is a powerful route to analyze complex biomedical samples.   相似文献   

8.
Colorectal cancer can be prevented if detected early (e.g., precancerous polyps‐adenoma). Endoscopic differential diagnosis of hyperplastic polyps (that have little or no risk of malignant transformation) and adenomas (that have prominent malignant latency) remains an unambiguous clinical challenge. Raman spectroscopy is an optical vibrational technique capable of probing biomolecular changes of tissue associated with neoplastic transformation. This work aims to apply a fiber‐optic simultaneous fingerprint (FP) and high wavenumber (HW) Raman spectroscopy technique for real‐time in vivo assessment of adenomatous polyps during clinical colonoscopy. We have developed a fiber‐optic Raman endoscopic technique capable of simultaneously acquiring both the FP (i.e., 800–1800 cm–1) and HW (i.e., 2800–3600 cm–1) Raman spectra from colorectal tissue subsurface (<200 µm) for real‐time assessment of colorectal carcinogenesis. In vivo FP/HW Raman spectra were acquired from 50 patients with 17 colorectal polyps during clinical colonoscopy. Prominent Raman spectral differences (p < 0.001) were found between hyperplastic (n = 118 spectra), adenoma (n = 184 spectra) that could be attributed to changes in inter‐ and intra‐cellular proteins, lipids, DNA and water structures and conformations. Simultaneous FP/HW Raman endoscopy provides a diagnostic sensitivity of 90.9% and specificity of 83.3% for differentiating adenoma from hyperplastic polyps, which is superior to either the FP or HW Raman technique alone. This study shows that simultaneous FP/HW Raman spectroscopy technique has the potential to be a clinically powerful tool for improving early diagnosis of adenomatous polyps in vivo during colonoscopic examination.

  相似文献   


9.
Stimulated Raman scattering (SRS) microscopy is a label‐free method generating images based on chemical contrast within samples, and has already shown its great potential for high‐sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio‐samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub‐cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto‐optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon‐Hydrogen (CH)‐stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm?1, is demonstrated.  相似文献   

10.
Molecular imaging methods allow the noninvasive detection and localization of specific molecules. Agents that report on molecular disease biomarkers can be used to diagnose and monitor disease. Many inflammatory diseases have molecular signatures within altered tissues. Although tissue biopsy is still the gold standard for detecting these signatures, several molecular imaging markers have been developed. Pharmacologic agents that block specific immune molecules have recently entered the clinic, and these drugs have already transformed the way we care for patients with immune-mediated diseases. The use of immunomodulatory drugs is usually guided by clinical assessment of the patient's response. Unfortunately, clinical assessment may miss the signs of inflammation, and many of the serologic markers of immune-mediated diseases correlate poorly with the underlying inflammatory activity within target tissues. Molecular imaging methods have the potential to improve our ability to detect and characterize tissue inflammation. We discuss some of the molecular signatures of immune activation and review molecular imaging methods that have been developed to detect active tissue inflammation.  相似文献   

11.
Changes on an organism by the exposure to environmental stressors may be characterized by hyperspectral images (HSI), which preserve the morphology of biological samples, and suitable chemometric tools. The approach proposed allows assessing and interpreting the effect of contaminant exposure on heterogeneous biological samples monitored by HSI at specific tissue levels. In this work, the model example used consists of the study of the effect of the exposure of chlorpyrifos‐oxon on zebrafish tissues. To assess this effect, unmixing of the biological sample images followed by tissue‐specific classification models based on the unmixed spectral signatures is proposed. Unmixing and classification are performed by multivariate curve resolution‐alternating least squares (MCR‐ALS) and partial least squares‐discriminant analysis (PLS‐DA), respectively. Crucial aspects of the approach are: (1) the simultaneous MCR‐ALS analysis of all images from 1 population to take into account biological variability and provide reliable tissue spectral signatures, and (2) the use of resolved spectral signatures from control and exposed populations obtained from resampling of pixel subsets analyzed by MCR‐ALS multiset analysis as information for the tissue‐specific PLS‐DA classification models. Classification results diagnose the presence of a significant effect and identify the spectral regions at a tissue level responsible for the biological change.   相似文献   

12.
Raman images were used to study the effect of the contaminant chlorpyriphos‐oxon on zebrafish eye samples. Multivariate Curve Resolution‐Alternating Least Squares (MCR‐ALS) was used to obtain the distribution maps and spectral signatures of biological components present in the images analyzed. The use of MCRALS spectral signatures as starting information for Partial Least Squares‐Discriminant Analysis allowed statistical assessment of the effect of the contaminant at a specific tissue level. Further details can be found in the article by Víctor Olmos et al. ( e201700089 ).

  相似文献   


13.
Spectral imaging approaches provide new possibilities for measuring and discriminating fluorescent molecules in living cells and tissues. These approaches often employ tunable filters and robust image processing algorithms to identify many fluorescent labels in a single image set. Here, we present results from a novel spectral imaging technology that scans the fluorescence excitation spectrum, demonstrating that excitation‐scanning hyperspectral image data can discriminate among tissue types and estimate the molecular composition of tissues. This approach allows fast, accurate quantification of many fluorescent species from multivariate image data without the need of exogenous labels or dyes. We evaluated the ability of the excitation‐scanning approach to identify endogenous fluorescence signatures in multiple unlabeled tissue types. Signatures were screened using multi‐pass principal component analysis. Endmember extraction techniques revealed conserved autofluorescent signatures across multiple tissue types. We further examined the ability to detect known molecular signatures by constructing spectral libraries of common endogenous fluorophores and applying multiple spectral analysis techniques on test images from lung, liver and kidney. Spectral deconvolution revealed structure‐specific morphologic contrast generated from pure molecule signatures. These results demonstrate that excitation‐scanning spectral imaging, coupled with spectral imaging processing techniques, provides an approach for discriminating among tissue types and assessing the molecular composition of tissues. Additionally, excitation scanning offers the ability to rapidly screen molecular markers across a range of tissues without using fluorescent labels. This approach lays the groundwork for translation of excitation‐scanning technologies to clinical imaging platforms.  相似文献   

14.
Navigation‐guided brain biopsies are the standard of care for diagnosis of several brain pathologies. However, imprecise targeting and tissue heterogeneity often hinder obtaining high‐quality tissue samples, resulting in poor diagnostic yield. We report the development and first clinical testing of a navigation‐guided fiberoptic Raman probe that allows surgeons to interrogate brain tissue in situ at the tip of the biopsy needle prior to tissue removal. The 900 μm diameter probe can detect high spectral quality Raman signals in both the fingerprint and high wavenumber spectral regions with minimal disruption to the neurosurgical workflow. The probe was tested in three brain tumor patients, and the acquired spectra in both normal brain and tumor tissue demonstrated the expected spectral features, indicating the quality of the data. As a proof‐of‐concept, we also demonstrate the consistency of the acquired Raman signal with different systems and experimental settings. Additional clinical development is planned to further evaluate the performance of the system and develop a statistical model for real‐time tissue classification during the biopsy procedure.   相似文献   

15.
Two‐dimensional (2D) correlation analysis is explored to data mine the time evolution of the characteristic Raman microspectroscopic signatures of the subcellular responses of the nucleoli of human lung cancer cells to the uptake of doxorubicin. A simulated dataset of experimental control spectra, perturbed with systematically time‐dependent spectral changes, constituted by a short‐term response which represents the initial binding of the drug in the nucleolus, followed by a longer term response of the organelle metabolism, is used to validate the analysis protocol. Applying 2D correlation analysis, the in phase, synchronous correlation coefficients are seen to contain contributions of both response profiles, whereas they can be independently extracted from the out of phase, asynchronous correlation coefficients. The methodology is applied to experimental data of the uptake of doxorubicin in human lung cell lines to differentiate the signatures of chemical binding and subsequent cellular response.   相似文献   

16.
The potential of Raman micro spectroscopy as an in vitro, non‐invasive tool for clinical applications has been demonstrated in recent years, specifically for cancer research. To further illustrate its potential as a high content and label free technique, it is important to show its capability to elucidate drug mechanisms of action and cellular resistances. In this study, cytotoxicity assays were employed to establish the toxicity profiles for 24 hr exposure of lung cancer cell lines, A549 and Calu‐1, to the commercially available drug, doxorubicin (DOX). Raman spectroscopy, coupled with Confocal Laser Scanning Microscopy and Flow Cytometry, was used to track the DOX mechanism of action, at a subcellular level, and to study the mechanisms of cellular resistance to DOX. Biomarkers related to the drug mechanism of action and cellular resistance to apoptosis, namely reactive oxygen species (ROS) and bcl‐2 protein expression, respectively, were also measured and correlated to Raman spectral profiles. Calu‐1 cells are shown to exhibit spectroscopic signatures of both direct DNA damage due to intercalation in the nucleus and indirect damage due to oxidative stress in the cytoplasm, whereas the A549 cell line only exhibits signatures of the former mechanism of action.

PCA of nucleolar, nuclear and cytoplasmic regions of A549 and Calu‐1 with corresponding loadings of PC1 and PC2  相似文献   


17.
The biomolecular events resulting from the progression of hepatoblastoma remain to be elucidated. Fourier‐transform infrared (FTIR) and Raman spectroscopies are capable of noninvasively and accurately capturing the biochemical properties of biological tissue from its pathological status. Our aim was to probe critial biomolecular changes of liver accompanying the progression of pure foetal hepatoblastoma (PFH) by FTIR and Raman spectroscopies. Herein, biochemical alterations were both evident in the FTIR spectra (regions of 3100‐2800 cm?1 and 1800‐900 cm?1) and the Raman spectra (region of 1800‐400 cm?1) among normal, borderline and malignant liver tissues. Compared with normal tissues, the ratios of protein‐to‐lipid, α‐helix‐to‐β‐sheet, RNA‐to‐DNA, CH3 methyl‐to‐CH2 methylene, glucose‐to‐phospholipids, and unsaturated‐to‐saturated lipids intensities were significantly higher in malignant tissues, while the ratios of RNA‐to‐Amide II, DNA‐to‐Amide II, glycogen‐to‐cholesterol and Amide I‐to‐Amide II intensities were remarkably lower. These biochemical alterations in the transition from normal to malignant have profound implications not only for cyto‐pathological classification but also for molecular understanding of PFH progression. The successive changes of the spectral characteristics have been shown to be consistent with the development of PFH, indicating that FTIR and Raman spectroscopies are excellent tools to interrogate the biochemical features of different grades of PFH.   相似文献   

18.
We applied our multimodal nonlinear spectral imaging microscope to the measurement of rat cornea. We successfully obtained multiple nonlinear signals of coherent anti‐Stokes Raman scattering (CARS), third‐order sum frequency generation (TSFG), and second harmonic generation (SHG). Depending on the nonlinear optical processes, the cornea tissue was visualized with different image contrast mechanism simultaneously. Due to white‐light laser excitation, multiplex CARS and TSFG spectra were obtained. Combined multimodal and spectral analysis clearly elucidated the layered structure of rat cornea with molecular structural information. This study indicates that our multimodal nonlinear spectral microscope is a promising bioimaging method for tissue study.

Multimodal nonlinear spectral images of rat cornea at corneal epithelium and corneal stroma in the in‐plane (XY) direction. With use of the combinational analysis of different nonlinear optical processes, detailed molecular structural information is available without staining or labelling.  相似文献   


19.
Raman microspectroscopy (RMS) was used to detect and image molecular markers specific to cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs). This technique is noninvasive and thus can be used to discriminate individual live CMs within highly heterogeneous cell populations. Principal component analysis (PCA) of the Raman spectra was used to build a classification model for identification of individual CMs. Retrospective immunostaining imaging was used as the gold standard for phenotypic identification of each cell. We were able to discriminate CMs from other phenotypes with >97% specificity and >96% sensitivity, as calculated with the use of cross-validation algorithms (target 100% specificity). A comparison between Raman spectral images corresponding to selected Raman bands identified by the PCA model and immunostaining of the same cells allowed assignment of the Raman spectral markers. We conclude that glycogen is responsible for the discrimination of CMs, whereas myofibril proteins have a lesser contribution. This study demonstrates the potential of RMS for allowing the noninvasive phenotypic identification of hESC progeny. With further development, such label-free optical techniques may enable the separation of high-purity cell populations with mature phenotypes, and provide repeated measurements to monitor time-dependent molecular changes in live hESCs during differentiation in vitro.  相似文献   

20.
We present the mapping of two anti‐human interleukin‐10 (hIL‐10) antibodies (CB/RS/2 and CB/RS/11) which have been described as binding their antigen cooperatively. The epitopes were identified using hIL‐10‐derived overlapping peptide scans prepared by spot synthesis. To identify residues essential for binding within the two epitopes, each position was replaced by all other L ‐amino acids. The epitope‐derived peptides were further characterized with respect to antibody affinity and their inhibition of the antibody–hIL‐10 interaction. One antibody (CB/RS/11) binds to residues which are completely buried in the X‐ray structure of IL‐10. Accessibility of this hidden epitope is enhanced upon binding of the antibody CB/RS/2, which recognizes a discontinuous epitope located nearby. The recognition of the hidden CB/RS/11 epitope, as well as the cooperative binding behaviour of the two antibodies, provides evidence that IL‐10 can adopt a conformational state other than that observed in the crystal structure. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号