首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo‐CLEM, the combination of fluorescence cryo‐microscopy (cryo‐FM) permitting for non‐invasive specific multi‐colour labelling, with electron cryo‐microscopy (cryo‐EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence‐based information for guiding cryo‐EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo‐CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano‐environment. However, a major obstacle of cryo‐CLEM currently hindering many biological applications is the large resolution gap between cryo‐FM (typically in the range of ~400 nm) and cryo‐EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super‐resolution cryo‐FM imaging and the correlation with cryo‐EM. This opened the door towards super‐resolution cryo‐CLEM, and thus towards direct correlation of structural details from both imaging modalities.  相似文献   

2.
Chronic stress affects nano to microscale structures of the brain cells/tissues due to suppression of neural growths and reconnections, hence the neuronal activities. This results in depression, memory loss and even death of the brain cells. Our recently developed novel optical technique, partial wave spectroscopic microscopy has nanoscale sensitivity, and hence, can detect nanoscale changes in brain tissues due to stress. In this study, we applied this technique to quantify the stress related structural changes in the corticosterone‐treated mouse model of stress. Our results show that brains from corticosterone‐treated mice showed higher nanoscale structural disorder in the hippocampal region as compared to the brain from normal (vehicle) mice. The increase in structural alteration correlates with the duration of the stress. We further quantified the relative changes and the spatial localization of these changes in this mouse model and found out that the maximum changes occurred nearly symmetrically in both regions of the hippocampus. The mRNA for stress‐related genes, brain‐derived neurotrophic factor and tyrosine kinase‐coupled receptor were also significantly reduced in the hippocampus of corticosterone‐treated mice compared to that in control mice. These results indicate that chronic corticosterone treatment induces nanoscale structural alterations in mouse brain that corresponds to changes in stress‐related gene expression.  相似文献   

3.
Corneal cross‐linking (CXL) using ultraviolet‐A (UVA) irradiation with a riboflavin photosensitizer has grown from an interesting concept to a practical clinical treatment for corneal ectatic diseases globally, such as keratoconus. To characterize the corneal structural changes, existing methods such as X‐ray microscopy, transmission electron microscopy, histology and optical coherence tomography (OCT) have been used. However, these methods have various drawbacks such as invasive detection, the impossibility for in vivo measurement, or limited resolution and sensitivity to structural alterations. Here, we report the application of oversampling nanosensitive OCT for probing the corneal structural alterations. The results indicate that the spatial period increases slightly after 30 minutes riboflavin instillation but decreases significantly after 30 minutes UVA irradiation following the Dresden protocol. The proposed noninvasive method can be implemented using existing OCT systems, without any additional components, for detecting nanoscale changes with the potential to assist diagnostic assessment during CXL treatment, and possibly to be a real‐time monitoring tool in clinics.  相似文献   

4.
Expansion microscopy is a super‐resolution method that allows expanding uniformly biological samples, by increasing the relative distances among fluorescent molecules labeling specific components. One of the main concerns in this approach regards the isotropic behavior at the nanoscale. The present study aims to determine the robustness of such a technique, quantifying the expansion parameters i.e. scale factor, isotropy, uniformity. Our focus is on the nuclear pore complex (NPC), as well‐known nanoscale component endowed of a preserved and symmetrical structure localized on the nuclear envelope. Here, we show that Nup153 is a good reporter to quantitatively address the isotropy of the expansion process. The quantitative analysis carried out on NPCs, at different spatial scales, allows concluding that expansion microscopy can be used at the nanoscale to measure subcellular features with an accuracy from 10 to 5 nm. Therefore, it is an excellent method for structural studies of macromolecular complexes.  相似文献   

5.
Confocal microscopy is an indispensable tool for biological imaging due to its high resolution and optical sectioning capability. However, its slow imaging speed and severe photobleaching have largely prevented further applications. Here, we present dual inclined beam line‐scanning (LS) confocal microscopy. The reduced excitation intensity of our imaging method enabled a 2‐fold longer observation time of fluorescence compared to traditional LS microscopy while maintaining a good sectioning capability and single‐molecule sensitivity. We characterized the performance of our method and applied it to subcellular imaging and three‐dimensional single‐molecule RNA imaging in mammalian cells.   相似文献   

6.
Label‐free optical nano‐imaging of dendritic structures and intracellular granules in biological cells is demonstrated using a bright and homogeneous nanometric light source. The optical nanometric light source is excited using a focused electron beam. A zinc oxide (ZnO) luminescent thin film was fabricated by atomic layer deposition (ALD) to produce the nanoscale light source. The ZnO film formed by ALD emitted the bright, homogeneous light, unlike that deposited by another method. The dendritic structures of label‐free macrophage receptor with collagenous structure‐expressing CHO cells were clearly visualized below the diffraction limit. The inner fiber structure was observed with 120 nm spatial resolution. Because the bright homogeneous emission from the ZnO film suppresses the background noise, the signal‐to‐noise ratio (SNR) for the imaging results was greater than 10. The ALD method helps achieve an electron beam excitation assisted microscope with high spatial resolution and high SNR.

  相似文献   


7.
Fluorescence imaging in the second near‐infrared optical window (NIR‐II, 900‐1700 nm) has become a technique of choice for noninvasive in vivo imaging in recent years. Greater penetration depths with high spatial resolution and low background can be achieved with this NIR‐II window, owing to low autofluorescence within this optical range and reduced scattering of long wavelength photons. Here, we present a novel design of confocal laser scanning microscope tailored for imaging in the NIR‐II window. We showcase the outstanding penetration depth of our confocal setup with a series of imaging experiments. HeLa cells labeled with PbS quantum dots with a peak emission wavelength of 1276 nm can be visualized through a 3.5‐mm‐thick layer of scattering medium, which is a 0.8% Lipofundin solution. A commercially available organic dye IR‐1061 (emission peak at 1132 nm), in its native form, is used for the first time, as a NIR‐II fluorescence label in cellular imaging. Our confocal setup is capable of capturing optically sectioned images of IR‐1061 labeled chondrocytes in fixed animal cartilage at a depth up to 800 μm, with a superb spatial resolution of around 2 μm.   相似文献   

8.
A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics.   相似文献   

9.
A large‐depth‐of‐field full‐field optical angiography (LD‐FFOA) method is developed to expand the depth‐of‐field (DOF) using a contrast pyramid fusion algorithm (CPFA). The absorption intensity fluctuation modulation effect is utilized to obtain full‐field optical angiography (FFOA) images at different focus positions. The CPFA is used to process these FFOA images with different focuses. By selecting high‐contrast areas, the CPFA can highlight the characteristics and details of blood vessels to obtain LD‐FFOA images. In the optimal case of the proposed method, the DOF for FFOA is more than tripled using 10 differently focused FFOA images. Both the phantom and animal experimental results show that the LD‐FFOA resolves FFOA defocusing issues induced by surface and thickness inhomogeneities in biological samples. The proposed method can be potentially applied to practical biological experiments.   相似文献   

10.
Osteocytes are the most abundant cells in bone and always the focus of bone research. They are embedded in the highly scattering mineralized bone matrix. Consequently, visualizing osteocytes deep in bone with subcellular resolution poses a major challenge for in vivo bone research. Here we overcome this challenge by demonstrating 3‐photon imaging of osteocytes through the intact mouse skull in vivo. Through broadband transmittance characterization, we establish that the excitation at the 1700‐nm window enables the highest optical transmittance through the skull. Using label‐free third‐harmonic generation (THG) imaging excited at this window, we visualize osteocytes through the whole 140‐μm mouse skull and 155 μm into the brain in vivo. By developing selective labeling technique for the interstitial space, we visualize the “sandwich” structure of osteocytes in their native environment. Our work provides novel imaging methodology for bone research in vivo.   相似文献   

11.
Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain.   相似文献   

12.
Transmission measurement has been perceived as a potential candidate for label‐free investigation of biological material. It is a real‐time, label‐free and non‐invasive optical detection technique that has found wide applications in pharmaceutical industry as well as the biological and medical fields. Combining transmission measurement with optical trapping has emerged as a powerful tool allowing stable sample trapping, while also facilitating transmittance data analysis. In this study, a near‐infrared laser beam emitting at a wavelength of 1064 nm was used for both optical trapping and transmission measurement investigation of human immunodeficiency virus 1 (HIV‐1) infected and uninfected TZM‐bl cells. The measurements of the transmittance intensity of individual cells in solution were carried out using a home built optical trapping system combined with laser transmission setup using a single beam gradient trap. Transmittance spectral intensity patterns revealed significant differences between the HIV‐1 infected and uninfected cells. This result suggests that the transmittance data analysis technique used in this study has the potential to differentiate between infected and uninfected TZM‐bl cells without the use of labels. The results obtained in this study could pave a way into developing an HIV‐1 label‐free diagnostic tool with possible applications at the point of care .  相似文献   

13.
Fibrillar forms of the Amyloid‐β (Aβ) protein have been implicated in the early stages of Alzheimer's disease (AD), however there are no standardised assays for soluble Aβ oligomer biomarkers that provide the best indication of the disease progression [1,2]. As a step towards a fast and label‐free method for testing different AD biomarkers, we have combined laser nano‐textured substrates with a SERS mapping technique and validated it using soluble Aβ‐40 oligomers [3‐5]. The nano‐textured SERS substrates provide fast (&5 min), label‐free spectra associated with soluble Aβ‐40 oligomers down to a concentration of 10 nM. Statistical analysis of the spectral intensities mapped over the substrate surface shows a quantitative correlation with the oligomer concentration.

Schematics of experiments: SERS mapping of Aβ‐40 (left figure: measured SERS intensity overlayed with an SEM image of ripples) was carried out on the laser nano‐textured (ripple) surface of sapphire and statistical analysis of the SERS intensity was carried out for qualitative (a high SERS intensity at low probability) and quantitative (a moderate SERS intenisty at the highest probability) measures. Quantitative statistical analysis of SERS mapping data can be performed off line for cross correlations with other known SERS signatures.  相似文献   


14.
Light‐sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co‐aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2‐photon LSFM (OS‐2P‐LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning‐descanning system. This system also provides improved light‐sheet confinement against scattering by using a 2‐photon Bessel beam. The OS‐2P‐LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high‐speed, translation‐free and scattering‐robust 3D imaging of large biological specimens.   相似文献   

15.
A novel hyperspectral confocal microscopy method to separate different cell populations in a co‐culture model is presented here. The described methodological and instrumental approach allows discrimination of different cell types using a non‐invasive, label free method with good accuracy with a single cell resolution. In particular, melanoma cells are discriminated from HaCaT cells by hyperspectral confocal imaging, principal component analysis and optical frequencies signing, as confirmed by fluorescence labelling cross check. The identification seems to be quite robust to be insensitive to the cellular shape within the studied samples, enabling to separate cells according to their cytotype down to a single cell sensitivity.

Set of hyperspectral images of melanoma‐keratinocytes co‐culture model (left), score plot of principal component analysis and spectral analysis of principal components coefficients (center), label‐free spectral identification of cell populations (right).  相似文献   


16.
Methods of nonlinear optics provide a vast arsenal of tools for label‐free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament‐protein‐antibody staining, subject to limitations and difficulties especially severe in live‐brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long‐standing challenges in label‐free astroglia imaging. We demonstrate that, with a suitable beam‐focusing geometry and careful driver‐pulse compression, microscopy of second‐harmonic generation (SHG) can enable a high‐resolution label‐free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear‐optical imaging of red blood cells based on third‐harmonic generation (THG) enhanced by a three‐photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high‐contrast, high‐resolution, stain‐free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood‐vessel walls and astrocyte‐process endfeet on gliovascular interfaces with a spatial resolution within 1 μm at focusing depths up to 20 μm inside a brain.  相似文献   

17.
Recent progress in three‐dimensional optical imaging techniques allows visualization of many comprehensive biological specimens. Optical clearing methods provide volumetric and quantitative information by overcoming the limited depth of light due to scattering. However, current imaging technologies mostly rely on the synthetic or genetic fluorescent labels, thus limits its application to whole‐body visualization of generic mouse models. Here, we report a label‐free optical projection tomography (LF‐OPT) technique for quantitative whole mouse embryo imaging. LF‐OPT is based on the attenuation contrast of light rather than fluorescence, and it utilizes projection imaging technique similar to computed tomography for visualizing the volumetric structure. We demonstrate this with a collection of mouse embryo morphologies in different stages using LF‐OPT. Additionally, we extract quantitative organ information applicable toward high‐throughput phenotype screening. Our results indicate that LF‐OPT can provide multi‐scale morphological information in various tissues including bone, which can be difficult in conventional optical imaging technique.  相似文献   

18.
Precise multicolor single molecule localization‐based microscopy (SMLM) requires bright probes with compatible photo‐chemical and spectral properties to resolve distinct molecular species at the nanoscale. The accuracy of multicolor SMLM is further challenged by color channel crosstalk and chromatic alignment errors. These constrains limit the applicability of known reversibly switchable organic dyes for optimized multicolor SMLM. Here, we tested 28 commercially available dyes for their suitability to super‐resolve a known cellular nanostructure. We identified eight novel dyes in different spectral regimes that enable high quality dSTORM imaging. Among those, the spectrally close dyes CF647 and CF680 comprise an optimal dye pair for spectral demixing‐based, registration free multicolor dSTORM with low crosstalk. Combining this dye pair with the separately excited CF568 we performed 3‐color dSTORM to image the relative nanoscale distribution of components of the endocytic machinery and the cytoskeleton.

A major limitation of multicolor single molecule localization based super‐resolution microscopy (SMLM) is the availability of suitable photo‐switchable fluorescent dyes. By screening 28 commercially available dyes, novel dyes in different spectral regimes were identified that are well suited for dual and triple color SMLM with low crosstalk. These novel dyes are employed to image the relative nanoscale distribution of sub‐cellular components.  相似文献   


19.
A laser's high degree of coherence leads to interferences, which—in the absence of precautions—can cause severe image distortions such as fringes and speckles and which thereby strongly hamper a meaningful interpretation of hyperspectral images in laser‐based widefield microspectroscopy. While images and spectra of homogenous samples may already suffer from interferences, any structured object such as a tissue thin section will add to these distortions due to wavelength‐ and, in particular, sample‐dependent phase shifts (structure sizes, absorption coefficients, refractive indices). This effect is devastating for the universal applicability of laser‐based microspectroscopy especially in the mid‐infrared (MIR), where cell sizes are of the same dimension as the wavelength of the illumination source. Here, we show that the impact of interferences is strongly mitigated by reducing the time‐averaged spatiotemporal coherence properties of the illumination using a moving plus a stationary scatterer. In this case, the illumination path provides a pseudothermal radiation source and spatially resolved spectra can be obtained at the quality of the reference method, that is, Fourier‐transform infrared microspectroscopy, without compromising spectral or spatial resolution.   相似文献   

20.
The authors describe the interaction of biological nanostructures formed by β2‐microglobulin amyloid fibrils with three‐dimensional silicon microstructures consisting in periodic arrays of vertical silicon walls (≈3 μm‐thick) separated by 50 μm‐deep air gaps (≈5 μm‐wide). These structures are of great interest from a biological point of view since they well mimic the interstitial environment typical of amyloid deposition in vivo. Moreover, they behave as hybrid photonic crystals, potentially applicable as optical transducers for label‐free detection of the kinetics of amyloid fibrils formation. Fluorescence and atomic force microscopy (AFM) show that a uniform distribution of amyloid fibrils is achieved when fibrillogenesis occurs directly on silicon. The high resolution AFM images also demonstrate that amyloid fibrils grown on silicon are characterized by the same fine structure typically ensured by fibrillogenesis in solution. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号