首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of novel scleral iontophoresis device for in situ delivery of lutein to the human retina was assessed by Resonance Raman spectroscopy (RRS) technique. Eight human donor eye globes were used for experiments, 6 of which underwent trans‐scleral iontophoresis delivery of lutein and the other 2 were used as controls. The scleral iontophoresis applicator was filled with liposome‐enriched 0.1% lutein solution and the generator's current was set at 2.5 mA and delivered for 4 min. A custom RRS setup was used for detecting lutein in the inner sclera, choroid, retinal periphery and macula of treated samples and controls. Forty minutes after iontophoresis, the inner sclera, choroid and retinal periphery were greatly enriched with lutein (P < .05); no lutein was found in the same ocular regions of non‐treated samples. In the same period, the average concentration of lutein in the macula (4.8 ± 1.7 ng/mm2) of treated samples was 1.3 times greater than controls (3.7 ± 1.0 ng/mm2; P = .4). Scleral iontophoresis was shown to be effective in delivering lutein to the human retina. Future studies will aim at assessing if this therapeutic strategy is valuable to enrich the macular pigment in human subjects.   相似文献   

2.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   


3.
An integrated 4‐modality endoscopy system combining white light imaging, autofluorescence imaging, diffuse reflectance spectroscopy and Raman spectroscopy technologies was developed for in vivo endoscopic nasopharyngeal cancer detection. Both high diagnostic sensitivity (98.6%) and high specificity (95.1%) for differentiating cancer from normal tissue sites were achieved using this system combined with multivariate diagnostic algorithm, demonstrating great potential for improving real‐time, in vivo diagnosis of cancer at endoscopy. Further details can be found in the article by Duo Lin et al. ( e201700251 )

  相似文献   


4.
The role of ultraviolet radiation in oxidative stress‐related ocular pathologies is less known than its role in skin cancer. Excessive exposure to ultraviolet radiation is associated with increased oxidative stress in eye tissues, which may promote the development of photokeratitis, cataract, and retinal damages. Children are especially vulnerable: large pupils, transparent ocular media. Efficient everyday protection of the eye should be considered from early age. (Image: with permission from Carl Zeiss Vision International GmbH, Aalen, Germany) Further details can be found in the article by Iliya V. Ivanov, Timo Mappes, Patrick Schaupp, et al. ( e201700377 ).

  相似文献   


5.
An optical fan was demonstrated to screen leukemia cells from the blood sample at the single‐cell level in a noninvasive and noncontact manner. Further details can be found in the article by Xiaoshuai Liu, Yuchao Li, Xiaohao Xu, Yao Zhang, Baojun Li ( e201900155 ).

  相似文献   


6.
Successful therapy of twin‐to‐twin transfusion syndrome requires accurate imaging to guide laser photocoagulation of the anastomosing placental vessels. Photoacoustic (PA) imaging is an alternative imaging method that provides contrast for hemoglobin, and in this study, it was used to visualize chorionic superficial and subsurface vasculature in human placentas. The strong potential of PA imaging to guide minimally invasive fetal therapies was demonstrated. Further details can be found in the article by Efthymios Maneas, Rosalind Aughwane, Nam Huynh, et al. ( e201900167 ).

  相似文献   


7.
Optimized light delivery allows for single shot whole organ optoacoustic imaging. The authors present an optimized illumination concept for volumetric tomography that utilizes 3D printing in combination with custom‐made optical fiber illumination. The new approach showed a clear advantage over conventional, single‐sided illumination strategies by eliminating the need to correct for illumination variances and resulting in enhancement of the effective field of view, greater penetration depth and significant improvements in the overall image quality. Further details can be found in the article by Benedict Mc Larney, Johannes Rebling, Zhenyue Chen, et al. ( e201800387 )

  相似文献   


8.
Raman images were used to study the effect of the contaminant chlorpyriphos‐oxon on zebrafish eye samples. Multivariate Curve Resolution‐Alternating Least Squares (MCR‐ALS) was used to obtain the distribution maps and spectral signatures of biological components present in the images analyzed. The use of MCRALS spectral signatures as starting information for Partial Least Squares‐Discriminant Analysis allowed statistical assessment of the effect of the contaminant at a specific tissue level. Further details can be found in the article by Víctor Olmos et al. ( e201700089 ).

  相似文献   


9.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


10.
A hyperspectral image data cube acquired from HEK‐293 cells labeled with cytoplasmic and nuclear stains: Calcein Green and NucBlu. The top view (XY plane) displays three spectrally unmixed channels for cellular autofluorescence (red), Calcein Green (green), and NucBlue (blue). The Z axis shows spectral information, from low to high wavelength. The article by Leavesley and colleagues describes an approach for calculating the sensitivity of spectral imaging assays for detecting a fluorescence signature within a mix of other signatures or autofluorescence. Further details can be found in the article by Silas J. Leavesley et al. ( e201600227 ).

  相似文献   


11.
12.
In this work, intravital multiphoton microscopy was used to image and quantify hepatobiliary metabolism of 6‐carboxyfluorescein diacetate in the recovery of acetaminophen‐overdose mice. It was found that the excretion of the probe molecule was time‐dependent and hepatobiliary metabolism is higher in recovered mice, suggesting that newly regenerated hepatocytes have higher metabolic capabilities. This approach may be further developed applied to studying drug‐induced hepatotoxicity in vivo. Further details can be found in the article by Feng‐Chieh Li, Sheng‐Lin Lee, Hung‐Ming Lin, et al. ( e201800296 ).

  相似文献   


13.
We present a hybrid dual‐wavelength optoacoustic and ultrasound bio‐microscope capable of rapid transcranial visualization of morphology and oxygenation status of large‐scale cerebral vascular networks. Imaging of entire cortical vasculature in mice is achieved with single capillary resolution and complemented by simultaneously acquired pulse‐echo ultrasound microscopy scans of the mouse skull. The new approach holds potential to facilitate studies into neurological and vascular abnormalities of the brain. Further details can be found in the article by Johannes Rebling, Héctor Estrada, Sven Gottschalk, et al. ( e201800057 ).

  相似文献   


14.
Full‐field functional optical hemocytometer (FFOH), based on the absorption intensity fluctuation modulation (AIFM) effect, is in vivo label‐free image method for capillaries of near‐transparent live biological specimens. FFOH can provide a flow video, flow velocity measurement and RBC count, simultaneously. The zebrafish experimental result shows the potential to study the physiological mechanisms of the blood circulation systems. Further details can be found in the article by Fuli Zhang et al. ( e201700039 )

  相似文献   


15.
Two‐photon microscopy is the tool of choice for fluorescence imaging of deep tissues with high resolution, but can be limited in three‐dimensional acquisition speed and penetration depth. In this work, these issues are addressed by using an acoustic optofluidic lens capable of ultrafast beam shaping on a pixel basis. Driving the lens with different phase profiles enables high‐speed volumetric imaging, or enhanced signal‐to‐background for deeper penetration. Further details can be found in the article by Simonluca Piazza et al. ( e201700050 )

  相似文献   


16.
Quantitative laser‐induced breakdown spectroscopy (LIBS) is successfully used for in‐vitro analysis of early stage calcification in aortic valvular interstitial cells (VICs). LIBS results indicate 5‐fold improvement in the detection limit of calcium deposition in VICs over cell histology techniques involving staining and colorimetric calcium assays. These results can establish LIBS at the forefront of early detection of calcification in VICs for pathological studies on Calcific Aortic Valve Disease (CAVD). Further details can be found in the article by Seyyed Ali Davari et al. ( e201600288 ).

  相似文献   


17.
A new type of high‐throughput imaging flow cytometer (>20 000 cells s‐1) based upon an all‐optical ultrafast laser‐scanning imaging technique, called free‐space angular‐chirp‐enhanced delay (FACED) is reported. FACED imaging flow cytometers enables high‐throughput visualization of functional morphology of individual cells with subcellular resolution. It critically empowers largescale and deep characterization of single cells and their heterogeneity with high statistical power— an ability to become increasingly critical in single‐cell analysis adopted in a wide range of biomedical and life‐science applications. Further details can be found in the article by Wenwei Yan et al. ( e201700178 )

  相似文献   


18.
Hyperspectral scanning laser optical tomography is developed to provide spectrally resolved volume data sets with high spectral resolution for large mesoscopic samples. It can be used to resolve largely overlapping fluorophores, as demonstrated by the 3D fluorescence hyperspectral reconstruction of a dual‐labelled mouse thymus gland sample and to distinguish between signals from autofluorescence of diseased and normal tissue without prior knowledge. Further details can be found in the article by Lingling Chen, Guiye Li, Li Tang, et al. ( e201800221 ).

  相似文献   


19.
How does the ischemic tissue re‐vascularize? Now we can visualize the reperfusion process at high spatial resolution by using a dual‐wavelength MEMS scanning based optical resolution photoacoustic microscopy (OR‐PAM) system. The fast imaging capability enables continuous monitoring of skin reperfusion in a mouse model. It's also found that the ischemic tissue has a significantly higher oxygen consumption rate in the reperfusion stage comparing to the normal tissue. Further details can be found in the article by Renzhe Bi, U.S. Dinish, Chi Ching Goh, et al. ( e201800454 ).

  相似文献   


20.
A fast polarization‐resolved second harmonic generation microscope is implemented to map collagen orientation in thick and deforming tissues during mechanical assays. This system is based on line‐to‐line switching of the laser polarization using an electro‐optical modulator and works in epi‐detection geometry. After proper calibration, it successfully highlights the collagen dynamic alignment along the traction direction in ex vivo murine skin dermis. Further details can be found in the article by Guillaume Ducourthial, Jean‐Sébastien Affagard, Margaux Schmeltz, et al. ( e201800336 ).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号