首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathological conditions in the brain, such as ischemia, trauma and seizure are accompanied by increased levels of free n-6 and n-3 polyunsaturated fatty acids (PUFA), mainly arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3). A neuroprotective role has been suggested for PUFA. For investigation of the potential molecular mechanisms involved in neuroprotection by PUFA, we studied the regulation of the concentration of intracellular Ca2+ ([Ca2+]i) in rat brain astrocytes. We evaluated the presence of extracellular PUFA and the release of intracellular PUFA. Interestingly, only the constitutive brain PUFA AA and DHA, but not eicosapentaenoic acid (EPA) had prominent effects on intracellular Ca2+. AA and DHA suppressed [Ca2+]i oscillation, inhibited store-operated Ca2+ entry, and reduced the amplitudes of Ca2+ responses evoked by agonists of G protein-coupled receptors. Moreover, prolonged exposure of astrocytes to AA and DHA brought the cells to a new steady state of a moderately elevated [Ca2+]i level, where the cells became virtually insensitive to external stimuli. This new steady state can be considered as a mechanism of self-protection. It isolates disturbed parts of the brain, because AA and DHA reduce pathological overstimulation in the tissue surrounding the damaged area. In inflammation-related events, frequently AA and DHA exhibit opposite effects. However, in astrocytes AA and DHA exerted comparable effects on [Ca2+]i. Extracellularly added AA and DHA, but not EPA, were also able to induce the release of [3H]AA from prelabeled astrocytes. Therefore, we also suggest the involvement of phospholipase A2 activation and lysophospholipid generation in the regulation of intracellular Ca2+ in astrocytes.  相似文献   

2.
Liu Y  Taylor CW 《FEBS letters》2006,580(17):4114-4120
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.  相似文献   

3.
Although Group IV cytosolic phospholipase A2 (cPLA2) in astrocytes has been implicated in a number of neurodegenerative diseases, mechanisms leading to its activation and release of arachidonic acid (AA) have not been clearly elucidated. In primary murine astrocytes, phorbol myristate acetate (PMA) and ATP stimulated phosphorylation of ERK1/2 and cPLA2 as well as evoked AA release. However, complete inhibition of phospho-ERK by U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK), did not completely inhibit PMA-stimulated cPLA2 and AA release. Epidermal growth factor (EGF) also stimulated phosphorylation of ERK1/2 and cPLA2[largely through a protein kinase C (PKC)-independent pathway], but EGF did not evoke AA release. These results suggest that phosphorylation of cPLA2 due to phospho-ERK is not sufficient to evoke AA release. However, complete inhibition of ATP-induced cPLA2 phosphorylation and AA release was observed when astrocytes were treated with GF109203x, a general PKC inhibitor, together with U0126, indicating the important role for both PKC and ERK in mediating the ATP-induced AA response. There is evidence that PMA and ATP stimulated AA release through different PKC isoforms in astrocytes. In agreement with the sensitivity of PMA-induced responses to PKC down-regulation, prolonged treatment with PMA resulted in down-regulation of PKCalpha and epsilon in these cells. Furthermore, PMA but not ATP stimulated rapid translocation of PKCalpha from cytosol to membranes. Together, our results provided evidence for an important role of PKC in mediating cPLA2 phosphorylation and AA release in astrocytes through both ERK1/2-dependent and ERK1/2-independent pathways.  相似文献   

4.
Glutamate release induced by mild depolarization was studied in astroglial preparations from the adult rat cerebral cortex, that is acutely isolated glial sub-cellular particles (gliosomes), cultured adult or neonatal astrocytes, and neuron-conditioned astrocytes. K+ (15, 35 mmol/L), 4-aminopyridine (0.1, 1 mmol/L) or veratrine (1, 10 micromol/L) increased endogenous glutamate or [3H]D-aspartate release from gliosomes. Neurotransmitter release was partly dependent on external Ca2+, suggesting the involvement of exocytotic-like processes, and partly because of the reversal of glutamate transporters. K+ increased gliosomal membrane potential, cytosolic Ca2+ concentration [Ca2+]i, and vesicle fusion rate. Ca2+ entry into gliosomes and glutamate release were independent from voltage-sensitive Ca2+ channel opening; they were instead abolished by 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiurea (KB-R7943), suggesting a role for the Na+/Ca2+ exchanger working in reverse mode. K+ (15, 35 mmol/L) elicited increase of [Ca2+]i and Ca2+-dependent endogenous glutamate release in adult, not in neonatal, astrocytes in culture. Glutamate release was even more marked in in vitro neuron-conditioned adult astrocytes. As seen for gliosomes, K+-induced Ca2+ influx and glutamate release were abolished by KB-R7943 also in cultured adult astrocytes. To conclude, depolarization triggers in vitro glutamate exocytosis from in situ matured adult astrocytes; an aptitude grounding on Ca2+ influx driven by the Na+/Ca2+ exchanger working in the reverse mode.  相似文献   

5.
The K+-stimulated efflux of endogenous taurine from primary rat cerebellar astrocyte cultures prepared from 7-9-day-old rats was studied at 16-18 days in vitro using HPLC analysis. Taurine efflux was dose-dependent at K+ concentrations between 10 mM and 80 mM, with an EC50 of approximately 50 mM. Maximum stimulation of efflux above basal levels ranged from 56% at 10 mM K+ (204 pmol/min/mg protein) to 470% at 80 mM K+ (960 pmol/min/mg protein). Removal of Ca2+ from the buffer and the addition of either 1 mM EGTA or 10 mM Mg2+ abolished K+-stimulated efflux. Taurine efflux peaked and fell in parallel with the K+ concentration, but with an approximate lag of 3-5 min. The time course and amount of preloaded [3H]taurine released did not differ significantly from that seen for endogenous efflux. Basal taurine efflux varied inversely with the extracellular concentration of Ca2+ over the concentration range 0-5.0 mM. The observed Ca2+ dependence is consistent with a role for Ca2+ in the regulation of taurine release. Furthermore, taurine release from astrocytes in response to elevated K+ may reflect a neuromodulatory role for this amino acid in the CNS.  相似文献   

6.
Angiotensin II (ANG II) promotes vascular smooth muscle cell (VSMC) growth, stimulates Ca(2+)-calmodulin (CaM)-dependent kinase II (CaMKII), and activates cytosolic Ca(2+)-dependent phospholipase A2 (cPLA2), which releases arachidonic acid (AA). ANG II also generates H2O2 and activates Akt, which have been implicated in ANG II actions in VSMC. This study was conducted to investigate the relationship of these signaling molecules to Akt activation in rat aortic VSMC. ANG II increased Akt activity, as measured by its phosphorylation at serine-473. ANG II (200 nM)-induced Akt phosphorylation was decreased by extracellular Ca2+ depletion and calcium chelator EGTA and inhibitors of CaM [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and CaMKII [(2-[N-(2-hydroxyethyl)]-N-(4-me-thoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine)]. cPLA2 inhibitor pyrrolidine-1, antisense oligonucleotide, and retroviral small interfering RNA also attenuated ANG II-induced Akt phosphorylation. AA increased Akt phosphorylation, and AA metabolism inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) blocked ANG II- and AA-induced Akt phosphorylation (199.03 +/- 27.91% with ANG II and 110.18 +/- 22.40% with ETYA + ANG II; 405.00 +/- 86.22% with AA and 153.97 +/- 63.26% with ETYA + AA). Inhibitors of lipoxygenase (cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate) and cytochrome P-450 (ketoconazole and 17-octadecynoic acid), but not cyclooxygenase (indomethacin), attenuated ANG II- and AA-induced Akt phosphorylation. Furthermore, 5(S)-, 12(S)-, 15(S)-, and 20-hydroxyeicosatetraenoic acids and 5,6-, 11,12-, and 14,15-epoxyeicosatrienoic acids increased Akt phosphorylation. Catalase inhibited ANG II-increased H2O2 production but not Akt phosphorylation. Oleic acid, which also increased H2O2 production, did not cause Akt phosphorylation. These data suggest that ANG II-induced Akt activation in VSMC is mediated by AA metabolites, most likely generated via lipoxygenase and cytochrome P-450 consequent to AA released by CaMKII-activated cPLA2 and independent of H2O2 production.  相似文献   

7.
Exogenous DHA is converted by human platelets to 14- and 11- HDHE and by human neutrophils mainly to 7- HDHE . Human platelets prelabeled with 14C-DHA, 14C-EPA and 14C-AA and stimulated with thrombin release and metabolize DHA only in trace amounts as compared to EPA and AA. 14C-DHA is incorporated into the 2-position of platelet phospholipids and occurs predominantly in phosphatidylethanolamine. DHA and EPA were also incorporated by dietary means into phospholipids of platelets and neutrophils. In resting platelets free DHA as well as free AA and EPA are not detectable. In platelets stimulated ex vivo with thrombin DHA is not significantly released which is in contrast to EPA and AA. After stimulation, 14- HDHE is found only in trace amounts as compared to 12-HETE and 12- HEPE . In DHA enriched neutrophils formation of HDHEs cannot be demonstrated after stimulation with ionophore A 23187. We conclude that even after dietary enrichment of DHA in phospholipids of platelets and neutrophils the level of free DHA and/or formation of HDHEs might be too low to substantially affect arachidonic acid metabolism and related functions of these cells.  相似文献   

8.
In this study we analyzed, for the first time, alterations in phospholipase A2 (PLA2) activity and response to parathyroid hormone (PTH) in rat enterocytes with aging. We found that PTH, rapidly stimulate arachidonic acid (AA) release in rat duodenal cells (+1- to 2-fold), an effect that is greatly potentiated by aging (+4-fold). We also found that hormone-induced AA release in young animals is Ca2+-dependent via cPLA2, while AA released by PTH in cells from aged rats is due to the activation of cPLA2 and the Ca2+-independent PLA2 (iPLA2). In enterocytes from 3 months old rats, PTH induced, in a time and dose-dependent fashion, the phosphorylation of cPLA2 on serine 505, with a maximum at 10 min (+7-fold). Basal levels of cPLA2 serine-phosphorylation were higher in old enterocytes, affecting the hormone response which was greatly diminished (+2-fold at 10 min). cPLA2 phosphorylation impairment in old animals was not related to changes of cPLA2 protein expression and did not explain the substantial increase on PTH-induced AA release with aging, further suggesting the involvement of a different PLA2 isoform. Intracellular Ca2+ chelation (BAPTA-AM, 5 microM) suppressed the serine phosphorylation of cPLA2 in both, young and aged rats, demonstrating that intracellular Ca2+ is required for full activation of cPLA2 in enterocytes stimulated with PTH. Hormone effect on cPLA2 was suppressed to a great extent by the MAP kinases ERK 1 and ERK2 inhibitor, PD 98059 (20 microM), the cAMP antagonist, Rp-cAMP, and the PKC inhibitor Ro31820 both, in young and aged animals. Enterocytes exposure to PTH also resulted in phospho-cPLA2 translocation from cytosol to nuclei and membrane fractions, where phospholipase substrates reside. Hormone-induced enzyme translocation is also modified by aging where, in contrast to young animals, part of phospho-cPLA2 remained cytosolic. Collectively, these data suggest that PTH activates in duodenal cells, a Ca2+-dependent cytosolic PLA2 and attendant AA release and that this activation requires prior stimulation of intracellular ERK1/2, PKA, and PKC. cPLA2 is the major enzyme responsible for AA release in young enterocytes while cPLA2 and the Ca2+-independent iPLA2, potentiate PTH-induced AA release in aged cells. Impairment of PTH activation of PLA2 isoforms upon aging may result in abnormal hormone regulation of membrane fluidity and permeability and thereby affecting intestinal cell membrane function.  相似文献   

9.
Activity of the epithelial Na+ channel (ENaC) is the limiting step for discretionary Na+ reabsorption in the cortical collecting duct. Xenopus laevis kidney A6 cells were used to investigate the effects of cytosolic phospholipase A2 (cPLA2) activity on Na+ transport. Application of aristolochic acid, a cPLA2 inhibitor, to the apical membrane of monolayers produced a decrease in apical [3H]arachidonic acid (AA) release and led to an approximate twofold increase in transepithelial Na+ current. Increased current was abolished by the nonmetabolized AA analog 5,8,11,14-eicosatetraynoic acid (ETYA), suggesting that AA, rather than one of its metabolic products, affected current. In single channel studies, ETYA produced a decrease in ENaC open probability. This suggests that cPLA2 is tonically active in A6 cells and that the end effect of liberated AA at the apical membrane is to reduce Na+ transport via actions on ENaC. In contrast, aristolochic acid applied basolaterally inhibited current, and the effect was not reversed by ETYA. Basolateral application of the cyclooxygenase inhibitor ibuprofen also inhibited current. Both effects were reversed by prostaglandin E2 (PGE2). This suggests that cPLA2 activity and free AA, which is metabolized to PGE2, are necessary to support transport. This study supports the fine-tuning of Na+ transport and reabsorption through the regulation of free AA and AA metabolism.  相似文献   

10.
Further Characterization of Dopamine Release by Permeabilized PC 12 Cells   总被引:3,自引:2,他引:1  
Rat pheochromocytoma cells (PC12) permeabilized with staphylococcal alpha-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC12 cells. Permeabilization with alpha-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC12 cells.  相似文献   

11.
Recombinant tumor necrosis factor alpha (rTNF-alpha)-induced release of endogenous fatty acids was examined in WEHI 164 clone 13 fibrosarcoma cells using a highly sensitive HPLC method. The initial rTNF-alpha-induced extracellular release of endogenous fatty acids was dominated by 20:4n;-6, 22:4n;-6, 24:4n;-6, and 18:1n;-9 showing relative rates of 2.9, 0.9, 1.1, and 1.0, respectively. Release of endogenous AA and DNA fragmentation occurred simultaneously and preceded cell death by approx. 2 h. Methyl arachidonoyl fluorophosphonate and LY311727, specific inhibitors of Ca(2+)-dependent cytosolic PLA(2) (cPLA(2)) and secretory PLA(2) (sPLA(2)), respectively, neither blocked rTNF-alpha-induced cytotoxicity or endogenous AA release. However, both inhibitors reduced rTNF-alpha-induced release of other endogenous fatty acids. In comparison, the antioxidant butylated hydroxyanisole (BHA) completely inhibited the rTNF-alpha-induced cytotoxicity as well as AA release mediated through the TNF receptor p55, while the very similar antioxidant butylated hydroxytoluene had no effect. BHA did not inhibit recombinant cPLA(2) or sPLA(2) enzyme activity in vitro. Furthermore, stimulation of cells with rTNF-alpha for 4 h did not increase cPLA(2) enzyme activity. The data indicate that neither cPLA(2) or sPLA(2) mediate rTNF-alpha-induced apoptosis and extracellular AA release in WEHI cells. The results suggest that a BHA-sensitive signaling pathway coupled to AA release is a key event in TNF-induced cytotoxicity in these cells.  相似文献   

12.
In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca2+-independent phospholipase A2 (iPLA2), Ca2+-independent plasmalogen PLA2 or secretory PLA2 (sPLA2), but not by Ca2+-dependent cytosolic PLA2 (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca2+ into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca2+-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.p. to unanesthetized rats. Radiolabeled DHA or AA was infused intravenously and their brain incorporation coefficients k*, measures of signaling, were imaged with quantitative autoradiography. NMDA or MK-801 compared with saline did not alter k* for DHA in any of 81 brain regions examined, whereas NMDA produced widespread and significant increments in k* for AA. In conclusion, in vivo brain DHA but not AA signaling via NMDA receptors is independent of extracellular Ca2+ and of cPLA2. DHA signaling may be mediated by iPLA2, plasmalogen PLA2, or other enzymes insensitive to low concentrations of Ca2+. Greater AA than DHA release during glutamate-induced excitotoxicity could cause brain cell damage.  相似文献   

13.
In pancreatic acinar cells analysis of the propagation speed of secretagogue-evoked Ca2+ waves can be used to examine coupling of hormone receptors to intracellular signal cascades that cause activation of protein kinase C or production of arachidonic acid (AA). In the present study we have investigated the role of cytosolic phospholipase A2 (cPLA2) and AA in acetylcholine (ACh)- and bombesin-induced Ca2+ signaling. Inhibition of cPLA2 caused acceleration of ACh-induced Ca2+ waves, whereas bombesin-evoked Ca2+ waves were unaffected. When enzymatic metabolization of AA was prevented with the cyclooxygenase inhibitor indomethacin or the lipoxygenase inhibitor nordihydroguaiaretic acid, ACh-induced Ca2+ waves were slowed down. Agonist-induced activation of cPLA2 involves mitogen-activated protein kinase (MAPK) activation. An increase in phosphorylation of p38(MAPK) and p42/44(MAPK) within 10 s after stimulation could be demonstrated for ACh but was absent for bombesin. Rapid phosphorylation of p38(MAPK) and p42/44(MAPK) could also be observed in the presence of cholecystokinin (CCK), which also causes activation of cPLA2. ACh-and CCK-induced Ca2+ waves were slowed down when p38(MAPK) was inhibited with SB 203580, whereas inhibition of p42/44(MAPK) with PD 98059 caused acceleration of ACh- and CCK-induced Ca2+ waves. The spreading of bombesin-evoked Ca2+ waves was affected neither by PD 98059 nor by SB 203580. Our data indicate that in mouse pancreatic acinar cells both ACh and CCK receptors couple to the cPLA2 pathway. cPLA2 activation occurs within 1-2 s after hormone application and is promoted by p42/44(MAPK) and inhibited by p38(MAPK). Furthermore, the data demonstrate that secondary (Ca2+-induced) Ca2+ release, which supports Ca2+ wave spreading, is inhibited by AA itself and not by a metabolite of AA.  相似文献   

14.
Astrocyte cultures prelabelled with either [3H]inositol or 45Ca2+ were exposed to ATP and its hydrolysis products. ATP and ADP, but not AMP and adenosine, produced increases in the accumulation of intracellular 3H-labelled inositol phosphates (IP), efflux of 45Ca2+, and release of thromboxane A2 (TXA2). Whereas ATP-stimulated 3H-IP accumulation was unaffected, its ability to promote TXA2 release was markedly reduced by mepacrine, an inhibitor of phospholipase A2 (PLA2). ATP-evoked 3H-IP production was also spared following treatment with the cyclooxygenase inhibitor, indomethacin. We conclude that ATP-induced phosphoinositide (PPI) breakdown and 45 Ca2+ mobilisation occurred in parallel with, if not preceded, the release of TXA2. Following depletion of intracellular Ca2+ with a brief preexposure to ATP in the absence of extracellular Ca2+, the release of TXA2 in response to a subsequent ATP challenge was greatly reduced when compared with control. These results suggest that mobilisation of cytosolic Ca2+ may be the stimulus for PLA2 activation and, thus, TXA2 release. Stimulation of alpha 1-adrenoceptors also caused PPI breakdown and 45 Ca2+ efflux but not TXA2 release. The effects of ATP and noradrenaline (NA) on 3H-IP accumulation were additive, but their combined ability to increase 45Ca2+ efflux was not. Interestingly, in the presence of NA, ATP-stimulated TXA2 release was reduced. Our data provide evidence that functional P2-purinergic receptors are present on astrocytes and that ATP is the first physiologically relevant stimulus found to initiate prostanoid release from these cells.  相似文献   

15.
Metabolic cascades involving arachidonic acid (AA) and docosahexaenoic acid (DHA) within brain can be independently targeted by drugs, diet and pathological conditions. Thus, AA turnover and brain expression of AA-selective cytosolic phospholipase A(2) (cPLA(2)), but not DHA turnover or expression of DHA-selective Ca(2+)-independent iPLA(2), are reduced in rats given agents effective against bipolar disorder mania, whereas experimental excitotoxicity and neuroinflammation selectively increase brain AA metabolism. Furthermore, the brain AA and DHA cascades are altered reciprocally by dietary n-3 polyunsaturated fatty acid (PUFA) deprivation in rats. DHA loss from brain is slowed and iPLA(2) expression is decreased, whereas cPLA(2) and COX-2 are upregulated, as are brain concentrations of AA and its elongation product, docosapentaenoic acid (DPA). Positron emission tomography (PET) has shown that the normal human brain consumes 17.8 and 4.6 mg/day, respectively, of AA and DHA, and that brain AA consumption is increased in Alzheimer disease patients. In the future, PET could help to determine how human brain AA or DHA consumption is influenced by diet, aging or disease.  相似文献   

16.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

17.
We investigated the regulation of arachidonic acid liberation catalyzed by group-IV cytosolic phospholipase A2 (cPLA2) in human platelets upon stimulation with thrombin through interaction with protease-activated receptor-1 (PAR-1) or glycoprotein Ib. Leupeptin, a protease inhibitor, completely inhibited thrombin-induced arachidonic acid liberation and Ca2+ mobilization, with inhibition of its protease activity. However, preincubation with thrombin in the presence of leupeptin potentiated Ca2+ ionophore-induced arachidonic acid liberation. The preincubation did not affect the intracellular Ca2+ level or cPLA2 activity in response to ionomycin. Human leukocyte elastase, which cleaves glycoprotein Ib, did not inhibit the enhancement of arachidonic acid liberation by thrombin in the presence of leupeptin. However, the effect of thrombin with leupeptin was abolished by a peptide corresponding to residues 54-65 of hirudin (hirudin peptide), which impairs the binding of thrombin to PAR-1. Furthermore, Phe-Pro-Arg chloromethyl ketone (PPACK)-thrombin, which binds to platelets but has no protease activity, also enhanced Ca2+ ionophore-induced arachidonic acid liberation. In contrast, trypsin with leupeptin did not mimic the effect of thrombin with leupeptin, and furthermore trypsin-induced arachidonic acid liberation was insensitive to hirudin peptide. On the basis of the present results, we suggest that thrombin may accelerate cPLA2-catalyzed arachidonic acid liberation through non-proteolytic action toward PAR-1 but not toward glycoprotein Ib in co-operation with the proteolytic action leading to Ca2+ mobilization.  相似文献   

18.
Propagation of interastrocyte Ca2+ waves is mediated by diffusion of extracellular adenosine triphosphate (ATP), and may require regenerative release of ATP. The ability of ATP to initiate release of intracellular ATP was assessed by labeling adenine nucleotide pools in astrocyte cultures with 14C-adenine. The 14C-purines released during exposure to ATP were then identified by thin-layer chromatography. ATP treatment caused a five-fold increase in release of 14C-ATP but not 14C-ADP or 14C-AMP, indicating selectivity for release of ATP. Other P2 receptor agonists also caused significant 14C-ATP release, and the P2 receptor antagonists suramin, reactive blue-2 and pyridoxalphosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS) inhibited ATP-induced 14C-ATP release to varying degrees, suggesting the involvement of a P2 receptor. ATP-induced 14C-ATP release was not affected by chelation of intracellular Ca2+ with BAPTA-AM, or by blockers of Ca2+ release from intracellular stores or of extracellular Ca2+ influx, suggesting a Ca2+-independent response. ATP-induced 14C-ATP release was significantly inhibited by non-selective anion channel blockers but not by blockers of ATP-binding cassette proteins, gap junction hemichannels, or vesicular exocytosis. Release of adenine nucleotides induced by 0 Ca2+ was, in contrast, not selective for ATP, and was susceptible to inhibition by gap junction blockers. These findings indicate that astrocytes are capable of ATP-induced ATP release and support a role for regenerative ATP release in glial Ca2+ wave propagation.  相似文献   

19.
Cytosolic phospholipase A2 (cPLA2) preferentially liberates arachidonic acid (AA), which is known to be elevated in Alzheimer's disease (AD). The aim of this study was to investigate the possible relationship between enhanced nitric oxide (NO) generation observed in AD and cPLA2 protein level, phosphorylation, and AA release in rat pheochromocytoma cell lines (PC12) differing in amyloid beta secretion. PC12 control cells, PC12 cells bearing the Swedish double mutation in amyloid beta precursor protein (APPsw), and PC12 cells transfected with human APP (APPwt) were used. The transfected APPwt and APPsw PC12 cells showed an about 2.8- and 4.8-fold increase of amyloid beta (Abeta) secretion comparing to control PC12 cells. An increase of NO synthase activity, cGMP and free radical levels in APPsw and APPwt PC12 cells was observed. cPLA2 protein level was higher in APPsw and APPwt PC12 cells comparing to PC12 cells. Moreover, phosphorylated cPLA2 protein level and [3H]AA release were also higher in APP-transfected PC12 cells than in the control PC12 cells. An NO donor, sodium nitroprusside, stimulated [3H]AA release from prelabeled cells. The highest NO-induced AA release was observed in control PC12 cells, the effect in the other cell lines being statistically insignificant. Inhibition of cPLA2 by AACOCF3 significantly decreased the AA release. Inhibitors of nNOS and gamma-secretase reduced AA release in APPsw and APPwt PC12 cells. The basal cytosolic [Ca2+](i) and mitochondrial Ca2+ concentration was not changed in all investigated cell lines. Stimulation with thapsigargin increased the cytosolic and mitochondrial Ca2+ level, activated NOS and stimulated AA release in APP-transfected PC12 cells. These results indicate that Abeta peptides enhance the protein level and phosphorylation of cPLA2 and AA release by the NO signaling pathway.  相似文献   

20.
The effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol), a compound known to block the uptake of acetylcholine (ACh) into cholinergic synaptic vesicles, on the release of endogenous and [14C]ACh from slices of rat striatum was investigated. ACh release was evoked either by electrical stimulation or by veratridine. The effect of electrical stimulation was entirely dependent on external Ca2+. By contrast, veratridine (40 microM) also enhanced ACh release in the absence of Ca2+. Indeed, with veratridine two components were clearly distinguished: one dependent on external Ca2+ and the other not. Vesamicol inhibited [14C]ACh release evoked by both veratridine and electrical stimulation in the presence of external Ca2+, provided it was added to the tissue prior to loading with [14C]choline. With the same treatment vesamicol only slightly affected the release of endogenous ACh. Under the same conditions the Ca2(+)-independent [14C]ACh release evoked by veratridine was not prevented by vesamicol. The differential responsiveness to vesamicol suggests that ACh pools involved in Ca2+o-dependent ACh release are different from those mobilized during Ca2+o-independent ACh release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号