共查询到20条相似文献,搜索用时 13 毫秒
1.
In the laboratory, the white rot fungus Phanerochaete
chrysosporium degrades numerous organic pollutants. Lack of a
slow-release delivery system to toxic waste sites, for this and other fungi,
however, constitutes an important barrier to practical implementation. In
this study, the use of calcium alginate as an encapsulant for mycelia was
investigated; samples were in the form of pellets 1–3 mm in diameter. When
refrigerated, alginate-embedded mycelia of P. chrysosporium were
viable for one year, both with and without nutrient supplementation. At room
temperature, in the absence of nutrient supplementation, viability decreased
sharply within 2 months. Addition of sawdust or corncob grits extended the
viability of alginate-embedded mycelia; nevertheless, after 9 months only
about 20% of the pellets stored at room temperature yielded fungal
growth. Spores of P. chrysosporium, embedded in alginate pellets
together with corncob grits, gave 75% viability after 9 months of
storage at room temperature. Alginate-embedded mycelia were used in Petri
plate toxicity tests with 2,4,6-trinitrotoluene (TNT) and gave more rapid and
reproducible results than tests performed with mycelial plugs. These
experiments demonstrated the feasibility of encapsulating P.
chrysosporium in calcium alginate pellets, thus providing a potential
method of delivering white rot fungi to toxic waste sites, as well as for
developing a system of standardized toxicity testing in plate assays.
Received: 10 July 1996 / Accepted: 13 August 1996 相似文献
2.
3.
Biotransformation of the Herbicide Atrazine by the White Rot Fungus Phanerochaete chrysosporium 下载免费PDF全文
Christian Mougin Chantal Laugero Michele Asther Jacqueline Dubroca Pierre Frasse Marcel Asther 《Applied microbiology》1994,60(2):705-708
Biotransformation of atrazine by the white rot fungus Phanerochaete chrysosporium was demonstrated by a 48% decrease of the initial herbicide concentration in the growth medium within the first 4 days of incubation, which corresponded to the mycelium-growing phase. Results clearly established the mineralization of the ethyl group of the herbicide. Analysis of the growth medium showed the formation of hydroxylated and/or N-dealkylated metabolites of atrazine during fungal degradation. 相似文献
4.
Venkataramanan Subramanian Jagjit S. Yadav 《Applied and environmental microbiology》2009,75(17):5570-5580
The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant.Endocrine-disrupting chemicals (EDCs) are widely distributed environmental contaminants. Surfactants are among the most commonly found environmental EDCs because of their extensive applications, which range from use as industrial chemicals to inclusion in common consumer products. In the United States, Japan, and Western Europe, surfactants are employed most frequently as detergents and as agents in textile, fiber, cosmetics, and pharmaceutical manufacturing. Nearly as common are uses in mining and flotation and in petroleum, paint, lacquer, plastic manufacturing, food, pulp and paper, agrochemical, and leather and fur industries (21).Alkylphenol ethoxylates are an important class of surfactants. Biodegradation of alkylphenol ethoxylates results in shortening of the ethoxylate chains, ultimately leading to the generation of alkylphenols, particularly nonyl- and octylphenols. Nonylphenol (NP) is the commercially predominant alkylphenol, representing nearly 85% of the total alkylphenol market. NP is a hydrophobic compound used primarily in the chemical manufacturing industry and exists as multiple congeners (11). Several congeners are relatively resistant to biodegradation and are therefore frequently detected in wastewater treatment plant effluents and rivers (15, 20, 25, 31, 48). In previous studies, 4-n-NP has been used as a test compound in risk assessment and biodegradation analyses (16, 23, 39). However, industrially generated technical-grade NP, consisting of more than 30 different isomers, is less biodegradable (14). This characteristic is due to the fact that more than 85% of these isomers possess a quaternary carbon atom in the branched alkyl chain, making them chemical contaminants of high environmental significance (28, 38, 40). Investigation of the susceptibility of technical-grade NP to biodegradation and assessment of health risks from this agent in in vitro and in vivo biological model systems are therefore warranted.NP is known to bind to the estrogen receptor, thereby mimicking the effects of endogenous hormones, and has been shown to induce synthesis of vitellogenin and inhibit testicular growth in rainbow trout (18, 37, 41). This observation has led to increased interest in the biodegradation and elimination of this class of xenobiotic surfactants from the environment.Certain microorganisms belonging to the bacterial and yeast groups have the ability to degrade NP (4, 5, 38, 39). Recent studies have shown the abilities of selected fungi, including white rot fungi, to degrade this chemical, albeit to various extents (33). Extracellular oxidases (laccases) have been implicated in the fungal oxidation of NP (2, 19).The model white rot fungus Phanerochaete chrysosporium is known for its ability to oxidize a wide variety of environmental toxicants. This unique characteristic has been attributed largely to its extracellular peroxidase system. Past studies have provided ample evidence, however, that environmental toxicants can be oxidized or biodegraded even in the absence of peroxidases under nutrient-sufficient (nonligninolytic) conditions (26, 44, 46), suggesting a primary role for other oxidative enzyme systems such as P450 monooxygenases.P. chrysosporium has recently been shown to possess an extensive P450 enzyme system, with ∼150 P450 monooxygenase genes in its genome (8, 30). Although there have been isolated reports indicating the involvement of P450 monooxygenation in the oxidation of xenobiotic chemicals in this organism, limited information on the identification of specific P450 genes/enzymes and related phase I and II metabolic genes important in such oxidations is available.It is well known that in other biological systems, inducers of P450 monooxygenases can also be substrates for oxidation by these enzymes (1). These considerations led us to study P450 genes inducible by NP, with the aim of identifying the putative P450 catalyst(s) involved in NP degradation. The results led to the first direct evidence for the involvement of fungal P450 enzymes in the degradation of the EDC NP and functional genomic identification of specific P450 monooxygenases responsive to an environmentally significant contaminant. 相似文献
5.
Biodegradation of Natural and Synthetic Humic Acids by the White Rot Fungus Phanerochaete chrysosporium 下载免费PDF全文
Roland Blondeau 《Applied microbiology》1989,55(5):1282-1285
Biodegradation of natural and synthetic (melanoidin) humic acids by Phanerochaete chrysosporium BKM-F 1767 was demonstrated by decolorization in batch culture, reduction in molecular weight, and 14CO2 production from labeled melanoidin. This biodegradation occurred during secondary metabolism of the fungus in nitrogen-limited cultures; experimental results suggest that all or a part of the lignin-degrading system of BKM-F 1767 plays a part in biodegradation. 相似文献
6.
A New Intermediate in the Mineralization of 3,4-Dichloroaniline by the White Rot Fungus Phanerochaete chrysosporium 下载免费PDF全文
Heinrich Sandermann Jr. Werner Heller Norbert Hertkorn Enamul Hoque Dietmar Pieper Reinhard Winkler 《Applied microbiology》1998,64(9):3305-3312
Phanerochaete chrysosporium ATCC 34541 has been reported to be unable to mineralize 3,4-dichloroaniline (DCA). However, high mineralization is now shown to occur when a fermentation temperature of 37° and gassing with oxygen are used. Mineralization did not correlate with lignin peroxidase activity. The latter was high under C limitation and low under N limitation, whereas the reverse was true for mineralization. The kinetics of DCA metabolism was studied in low-N and low-C and C- and N-rich culture media by metabolite analysis and 14CO2 determination. In all cases, DCA disappeared within 2 days, and a novel highly polar conjugate termed DCAX accumulated in the growth medium. This metabolite was a dead-end product under C and N enrichment. In oxygenated low-C medium and in much higher yield in oxygenated low-N medium, DCAX was converted to DCA-succinimide and then mineralized. DCAX was purified by high-performance liquid chromatography and identified as N-(3,4-dichlorophenyl)-α-ketoglutaryl-δ-amide by high-performance liquid chromatography and mass spectroscopy, gas chromatography and mass spectroscopy, and nuclear magnetic resonance spectroscopy. The formation of conjugate intermediates is proposed to facilitate mineralization because the sensitive amino group of DCA needs protection so that ring cleavage rather than oligomerization can occur. 相似文献
7.
Characterization of Leucine Auxotrophs of the White Rot Basidiomycete Phanerochaete chrysosporium 总被引:1,自引:1,他引:1 下载免费PDF全文
Six leucine auxotrophic strains of the white rot basidiomycete Phanerochaete chrysosporium were characterized genetically and biochemically. Complementation studies involving the use of heterokaryons identified three leucine complementation groups. Since all of the leucine auxotrophs grew on minimal medium supplemented with α-ketoisocaproate as well as with leucine, the transaminase catalyzing the last step in the leucine pathway was apparently normal in all strains. Therefore, the wild-type, auxotrophic, and several heterokaryotic strains were assayed for the activities of the other enzymes specific to leucine biosynthesis. Leu2 and Leu4 strains (complementation group I) lacked only α-isopropylmalate synthase activity; Leu3 and Leu6 strains (group III) lacked isopropylmalate isomerase activity; and Leu1 and Leu5 strains (group II) lacked β-isopropylmalate dehydrogenase. Heterokaryons formed from leucine auxotrophs of different complementation groups had levels of activity for all three enzymes similar to those found in the wild-type strain. 相似文献
8.
Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767 总被引:6,自引:3,他引:6 下载免费PDF全文
It has been widely reported that the white rot basidiomycete Phanerochaete chrysosporium, unlike most other white rot fungi, does not produce laccase, an enzyme implicated in lignin biodegradation. Our results showed that P. chrysosporium BKM-F1767 produces extracellular laccase in a defined culture medium containing cellulose (10 g/liter) and either 2.4 or 24 mM ammonium tartrate. Laccase activity was demonstrated in the concentrated extracellular culture fluids of this organism as determined by a laccase plate assay as well as a spectrophotometric assay with ABTS [2,2(prm1)-azinobis(3-ethylbenzathiazoline-6-sulfonic acid)] as the substrate. Laccase activity was observed even after addition of excess catalase to the extracellular culture fluid to destroy the endogenously produced hydrogen peroxide, indicating that the observed activity is not due to a peroxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by activity staining with ABTS revealed the presence of a laccase band with an estimated M(infr) of 46,500. 相似文献
9.
The extracellular enzymes and cell mass from the pregrown Phanerochaete chrysosporium cultures were used for the degradation of PCP. The use of both extracellular enzymes and cell mass resulted in extensive mineralization of PCP, while the action of only the crude extracellular enzymes led to the formation of a degradation intermediate (TCHD). A kinetic model, which describes the relationship among PCP degradation, initial PCP concentration, dosage of extracellular enzymes, and cell mass concentration, was developed. Based on this model, various effects of initial PCP concentration, dosage of extracellular enzymes, and cell mass concentration were evaluated experimentally. It was found that when initial PCP concentration is lower than 12 mumol/L, the model of a parallel-series first-order reaction is sufficient to describe the degradation process. PCP disappearance and mineralization were enhanced by increasing either the extracellular enzyme concentration or the cell mass concentration. As high as 70% of PCP mineralization could be obtained by using a higher dosage of extracellular enzymes and cell mass. Various parameters of the kinetic model were determined and the model was verified experimentally. Simulation using this model provided the criteria needed to choose rational dosages of extracellular enzymes and cell mass for the degradation of PCP. Data reported allow some insight into the function of the extracellular enzymes and cell mass of P. chrysosporium in degradation processes of toxic pollutants and assist in the design and evaluation of practical bioremediation methods. 相似文献
10.
Enzymatic Mechanisms Involved in Phenanthrene Degradation by the White Rot Fungus Pleurotus ostreatus 总被引:4,自引:0,他引:4 下载免费PDF全文
The enzymatic mechanisms involved in the degradation of phenanthrene by the white rot fungus Pleurotus ostreatus were examined. Phase I metabolism (cytochrome P-450 monooxygenase and epoxide hydrolase) and phase II conjugation (glutathione S-transferase, aryl sulfotransferase, UDP-glucuronosyltransferase, and UDP-glucosyltransferase) enzyme activities were determined for mycelial extracts of P. ostreatus. Cytochrome P-450 was detected in both cytosolic and microsomal fractions at 0.16 and 0.38 nmol min(sup-1) mg of protein(sup1), respectively. Both fractions oxidized [9,10-(sup14)C]phenanthrene to phenanthrene trans-9,10-dihydrodiol. The cytochrome P-450 inhibitors 1-aminobenzotriazole (0.1 mM), SKF-525A (proadifen, 0.1 mM), and carbon monoxide inhibited the cytosolic and microsomal P-450s differently. Cytosolic and microsomal epoxide hydrolase activities, with phenanthrene 9,10-oxide as the substrate, were similar, with specific activities of 0.50 and 0.41 nmol min(sup-1) mg of protein(sup-1), respectively. The epoxide hydrolase inhibitor cyclohexene oxide (5 mM) significantly inhibited the formation of phenanthrene trans-9,10-dihydrodiol in both fractions. The phase II enzyme 1-chloro-2,4-dinitrobenzene glutathione S-transferase was detected in the cytosolic fraction (4.16 nmol min(sup-1) mg of protein(sup-1)), whereas aryl adenosine-3(prm1)-phosphate-5(prm1)-phosphosulfate sulfotransferase (aryl PAPS sulfotransferase) UDP-glucuronosyltransferase, and UDP-glucosyltransferase had microsomal activities of 2.14, 4.25, and 4.21 nmol min(sup-1) mg of protein(sup-1), respectively, with low activity in the cytosolic fraction. However, when P. ostreatus culture broth incubated with phenanthrene was screened for phase II metabolites, no sulfate, glutathione, glucoside, or glucuronide conjugates of phenanthrene metabolites were detected. These experiments indicate the involvement of cytochrome P-450 monooxygenase and epoxide hydrolase in the initial phase I oxidation of phenanthrene to form phenanthrene trans-9,10-dihydrodiol. Laccase and manganese-independent peroxidase were not involved in the initial oxidation of phenanthrene. Although P. ostreatus had phase II xenobiotic metabolizing enzymes, conjugation reactions were not important for the elimination of hydroxylated phenanthrene. 相似文献
11.
Previous studies have shown that a lignin-degrading system appears in cultures of the white rot fungus Phanerochaete chrysosporium in response to nitrogen starvation, apparently as part of secondary metabolism. We examined the influence of limiting carbohydrate, sulfur, or phosphorus and the effect of varying the concentrations of four trace metals, Ca, and Mg. Limitation of carbohydrate or sulfur but not limitation of phosphorus triggered ligninolytic activity. When only carbohydrate was limiting, supplementary carbohydrate caused a transient repression of activity. In carbohydrate-limited cultures, ligninolytic activity appeared when the supplied carbohydrate was depleted, and this activity was associated with a decrease in mycelial dry weight. The amount of lignin degraded depended on the amount of carbohydrate provided, which determined the amount of mycelium produced during primary growth. Carbohydrate-limited cultures synthesized only small amounts of the secondary metabolite veratryl alcohol compared with nitrogen-limited cultures. l-Glutamate sharply repressed ligninolytic activity in carbohydrate-starved cultures, but NH(4) did not. Ligninolytic activity was also triggered in cultures supplied with 37 muM sulfur as the only limiting nutrient. The balance of trace metals, Mg, and Ca was important for lignin degradation. 相似文献
12.
Duane C. Ulmer Matti S. A. Leisola Brigitte H. Schmidt Armin Fiechter 《Applied microbiology》1983,45(6):1795-1801
Phanerochaete chrysosporium degraded purified Kraft lignin, alkali-extracted and dioxane-extracted straw lignin, and lignosulfonates at a similar rate, producing small-molecular-weight (~1,000) soluble products which comprised 25 to 35% of the original lignins. At concentrations of 1 g of lignin liter−1, 90 to 100% of the acid-insoluble Kraft, alkali straw, and dioxane straw lignins were degraded by 1 g of fungal mycelium liter−1 within an active ligninolytic period of 2 to 3 days. Cultures with biomass concentrations as low as 0.16 g liter−1 could also completely degrade 1 g of lignin liter−1 during an active period of 6 to 8 days. The absorbance at 280 nm of 2 g of lignosulfonate liter−1 increased during the first 3 days of incubation and decreased to 35% of the original value during the next 7 days. The capacity of 1 g of cells to degrade alkali-extracted straw lignin under optimized conditions was estimated to be as high as 1.0 g day−1. This degradation occurred with a simultaneous glucose consumption rate of 1.0 g day−1. When glucose or cellular energy resources were depleted, lignin degradation ceased. The ability of P. chrysosporium to degrade the various lignins in a similar manner and at very low biomass concentrations indicates that the enzymes responsible for lignin degradation are nonspecific. 相似文献
13.
During investigation of biodegradation in soil, we have found that classical or standard techniques for introduction of compounds and the growth of fungus into soil are ill-defined and inadequate. In response to this deficiency, a method for controlled introduction of extractable compounds and for the growth of fungus in soils has been developed. This method was successfully used to study the degradation of fluorene in soil by the fungus Phanerochaete chrysosporium. 相似文献
14.
Purification and Partial Characterization of a Laccase from the White Rot Fungus Phanerochaete flavido-alba 下载免费PDF全文
In addition to excreting lignin-degrading peroxidases, the white rot fungus Phanerochaete flavido-alba also excretes a laccase. This protein was purified to homogeneity and found to have a molecular weight of 94,000 and an isoelectric point lower than 3.55. Its UV-visible spectrum is typical of copper-containing proteins. 相似文献
15.
16.
17.
Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. 总被引:4,自引:6,他引:4 下载免费PDF全文
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place. 相似文献
18.
Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. 总被引:11,自引:0,他引:11
Under nitrogen-limiting, secondary metabolic conditions, the white rot basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically 14C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4'-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-14C]phenol and 4-phenylazo-[U-14C]2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil. 相似文献
19.
Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. 总被引:5,自引:0,他引:5
Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place. 相似文献
20.
Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. 总被引:5,自引:7,他引:5 下载免费PDF全文
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium rapidly mineralizes 2,4,5-trichlorophenol. The pathway for degradation of 2,4,5-trichlorophenol was elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway involves cycles of peroxidase-catalyzed oxidative dechlorination reactions followed by quinone reduction reactions to yield the key intermediate 1,2,4,5-tetrahydroxybenzene, which is presumably ring cleaved. In the first step of the pathway, 2,4,5-trichlorophenol is oxidized to 2,5-dichloro-1,4-benzoquinone by either MnP or Lip. 2,5-Dichloro-1,4-benzoquinone is then reduced to 2,5-dichloro-1,4-hydroquinone. The 2,5-dichloro-1,4-hydroquinone is oxidized by MnP to generate 5-chloro-4-hydroxy-1,2-benzoquinone. The orthoquinone is in turn reduced to 5-chloro-1,2,4-trihydroxybenzene. Finally, the 5-chlorotrihydroxybenzene undergoes another cycle of oxidative dechlorination and reduction reactions to generate 1,2,4,5-tetrahydroxybenzene. The latter is presumably ring cleaved, with subsequent degradation to CO2. In this pathway, the substrate is oxidatively dechlorinated by LiP or MnP in a reaction which produces a quinone. The quinone intermediate is recycled by a reduction reaction to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This pathway apparently results in the removal of all three chlorine atoms before ring cleavage occurs. 相似文献