首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome-c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) forms a noncovalent 1:1 complex with horse cytochrome c in low ionic strength solution that is detectable by proton NMR spectroscopy. When the entire proton hyperfine-shifted spectrum is considered only five hyperfine resonances exhibit unambiguously detectable shifts: the heme 8-CH3 and 3-CH3 resonances, single proton resonances near 19 ppm and -4 ppm and the methionine-80 methyl group. These shifts are very similar to those observed for the covalently crosslinked complex of cytochrome-c peroxidase and horse cytochrome c, but different from those reported for cytochrome c complexes with flavodoxin and cytochrome b5. By comparison with the shifts reported for lysine-13-modified cytochrome c we conclude that the results reported here support the Poulos-Kraut proposed structure for the molecular redox complex between cytochrome-c peroxidase and cytochrome c. These results indicate that the principal site of interaction with cytochrome-c peroxidase is the exposed heme edge of horse cytochrome c, in proximity to lysine-13 and the heme pyrrole II. The noncovalent cytochrome-c peroxidase-cytochrome c complex exists in the rapid-exchange time limit even at 500 mHz proton frequency. Our data provide an improved estimate of the minimum off-rate for exchanging cytochrome c as 1133 (+/- 120) s-1 at 23 degrees C.  相似文献   

2.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

3.
The effects of complex formation with flavodoxin on the proton NMR spectrum of cytochrome c are to change the resonance frequencies and to increase the bandwidths of most of the low and high field heme, Met-80, and His-18 protons. These effects are, in general, more pronounced than has been reported for other cytochrome c complexes. The degree of line broadening for many heme related resonances suggests that complex formation induces changes in the cytochrome structure. These results provide the first spectroscopic evidence which corroborates the proposed model for the cytochrome c: flavodoxin complex (1-3).  相似文献   

4.
Proton NMR spectroscopy at 500 and 361 MHz has been used to characterize the noncovalent or electrostatic complexes of yeast cytochrome c peroxidase (CcP) with horse, tuna, yeast isozyme-1, and yeast isozyme-2 ferricytochromes c and the covalently cross-linked complexes of cytochrome c peroxidase with horse and yeast isozyme-1 ferricytochromes c. Under the conditions employed in this work, the stoichiometry of the predominant complex formed in solution (which totaled greater than 90% of complex formed) was found to be 1:1 in all cases. These studies have elucidated significant differences in the proton NMR absorption spectra and the one-dimensional nuclear Overhauser effect difference spectra of the complexes, depending on the specific species of ferricytochrome c incorporated. In particular, the results indicate that the noncovalent complexes formed between CcP and physiological redox partners (yeast isozyme-1 or yeast isozyme-2 ferricytochromes c) are distinctly different from the noncovalent complexes formed between CcP and ferricytochromes c from horse and tuna. Parallel chemical cross-linking studies carried out using mixtures of cytochrome c peroxidase with horse ferricytochrome c, and cytochrome c peroxidase with yeast isozyme-1 ferricytochrome c further emphasize such cytochrome c-dependent differences, with only the covalently cross-linked complex of physiological redox partners (cytochrome c peroxidase/yeast isozyme-1) displaying NMR spectra characteristic of a heterogeneous mixture of different 1:1 complexes. Finally, one-dimensional nuclear Overhauser effect experiments have proven valuable in selectively and efficiently probing the protein-protein interface in these complexes, including the environment around the cytochrome c heme 3-methyl group and Phe-82.  相似文献   

5.
The isolated complexes of ferricytochrome c with cytochrome c oxidase, cytochrome c reductase (cytochrome bc1 or complex III), and cytochrome c1 (a subunit of cytochrome c reductase) were investigated by the method of differential chemical modification (Bosshard, H.R. (1979) Methods Biochem. Anal. 25, 273-301). By this method the chemical reactivity of each of the 19 lysyl side chains of horse cytochrome c was compared in free and in complexed cytochrome c and binding sites were deduced from altered chemical reactivities of particular lysyl side chains in complexed cytochrome c. The most important findings follow. 1. The binding sites on cytochrome c for cytochrome c oxidase and cytochrome c reductase, defined in terms of the involvement of particular lysyl residues, are indistinguishable. The two oxidation-reduction partners of cytochrome c interact at the front (exposed heme edge) and top left part of the molecule, shielding mainly lysyl residues 8, 13, 72 + 73, 86, and 87. The chemical reactivity of lysyl residues 22, 39, 53, 55, 60, 99, and 100 is unaffected by complex formation while the remaining lysyl residues in positions 5, 7, 25, 27, 79, and 88 are somewhat less reactive in the complexed molecule. 2. When bound to cytochrome c reductase or to the isolated cytochrome c1 subunit of the reductase the same lysyl side chains of cytochrome c are shielded. This indicates that cytochrome c binds to the c1 subunit of the reductase during the electron transfer process.  相似文献   

6.
Cytochrome c derivatives modified with a photoactivatable arylazido group in selected lysine residues were irradiated in the presence of cytochrome c peroxidase (EC 1.11.1.5). A derivative modified at lysine 13 was able to cross-link to the enzyme and inhibit electron transfer activity. Complete inhibition of cytochrome c peroxidase activity was obtained when 1 mol of cytochrome c was covalently bound per mol of cytochrome c peroxidase. Chemical cleavage of the covalent complex has been used for a preliminary characterization of the site of cross-linking of cytochrome c to cytochrome c peroxidase. This linkage site was localized to the NH2 terminal part of cytochrome c peroxidase including residues 1-51.  相似文献   

7.
Cytochrome c peroxidase and cytochrome c form a noncovalent electron transfer complex in the course of the peroxidase-catalyzed reduction of H2O2. The two hemoproteins were cross-linked in 40% yield to a covalent 1:1 complex with the aid of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was found to be a valid model of the noncovalent electron transfer complex for the following reasons. The covalent complex had only 5% residual peroxidase activity toward exogeneous ferrocytochrome c indicating that the cross-linked cytochrome c covers the electron-accepting site of cytochrome c peroxidase. The residual peroxidase activity was almost independent of ionic strength indicating that the electron-accepting site is much less accessible even when ionic bonds between the two cross-linked hemoproteins are severed. The rate of reduction of heme c by ascorbate is 15 times slower in the covalent complex than in free cytochrome c and is independent of ionic strength. Although the covalent complex may not have been entirely pure with respect to the number and location of the cross-links, two major cross-links could be localized to within a few residues. One is from Lys 13 of cytochrome c to an acidic residue in positions 32, 33, 34, 35, or 37 of cytochrome c peroxidase, the other from Lys 86 of cytochrome c to a carboxyl group in the same cluster of acidic residues. The result stresses the importance of a peculiar stretch of acidic residues of cytochrome c peroxidase and of Lys 13 and 86 of cytochrome c.  相似文献   

8.
The complex formation of two electron transfer proteins, cytochrome c3 and ferredoxin I from Desulfovibrio desulfuricans Norway, has been shown by 1H-NMR spectroscopy. Presence of ferredoxin I produces ferricytochrome c3 1H-NMR spectrum modifications. The chemical shift of perturbated heme methyl resonances has been used to determine the stoichiometry of the complex. At pH 7.6 and 20 degrees C, the two proteins were found to form a complex 1:1 with an association constant, KA, of 10(4) M-1. Two of the four hemes are affected by presence of ferredoxin I and may be involved in the electron transfer sites. The heme methyl resonances are average resonances of free and bound cytochrome c3 resonances, indicating a fast exchange process on the NMR time scale.  相似文献   

9.
The kinetics of reduction of free flavin semiquinones of the individual components of 1:1 covalent and electrostatic complexes of yeast ferric and ferryl cytochrome c peroxidase and ferric horse cytochrome c have been studied. Covalent cross-linking between the peroxidase and cytochrome c at low ionic strength results in a complex that has kinetic properties both similar to and different from those of the electrostatic complex. Whereas the cytochrome c heme exposure to exogenous reductants is similar in both complexes, the apparent electrostatic environment near the cytochrome c heme edge is markedly different. In the electrostatic complex, a net positive charge is present, whereas in the covalent complex, an essentially neutral electrostatic charge is found. Intracomplex electron transfer within the two complexes is also different. For the covalent complex, electron transfer from ferrous cytochrome c to the ferryl peroxidase has a rate constant of 1560 s-1, which is invariant with respect to changes in the ionic strength. The rate constant for intracomplex electron transfer within the electrostatic complex is highly ionic strength dependent. At mu = 8 mM a value of 750 s-1 has been obtained [Hazzard, J. T., Poulos, T. L., & Tollin, G. (1987) Biochemistry 26, 2836-2848], whereas at mu = 30 mM the value is 3300 s-1. This ionic strength dependency for the electrostatic complex has been interpreted in terms of the rearrangement of the two proteins comprising the complex to a more favorable orientation for electron transfer. In the case of the covalent complex, such reorientation is apparently impeded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Complex formation between cytochrome c oxidase and cytochrome c perturbs the optical absorption spectrum of heme c and heme a in the region of the alpha-, beta, and gamma-bands. The perturbations have been used to titrate cytochrome c oxidase with cytochrome c. A stoichiometry of one molecule of cytochrome c bound per molecule of cytochrome c oxidase is obtained (1 heme c per heme aa3). In contrast, a stoichiometry of 2:1 was found earlier using a gel-filtration method (Rieder, R., and Bosshard, H.R. (1978) J. Biol. Chem. 253, 6045-6053). From the result of the spectrophotometric titration and from the wavelength position of the perturbation signals it is concluded that cytochrome c oxidase contains only a single binding site for cytochrome c which is close enough to heme a to function as an electron transfer site. The second site detected earlier by the gel-filtration method must be remote from this electron transfer site. Scatchard plots of the titration data are curvilinear, possibly indicating interactions between cytochrome c-binding sites on adjacent monomers of dimeric cytochrome c oxidase. The relationship between cytochrome c binding and the reaction of cytochrome c oxidase with ferrocytochrome c is discussed.  相似文献   

11.
Complex formation between Azotobacter vinelandii flavodoxin and horse cytochrome c has been demonstrated through cross-linking studies with dimethyl suberimidate, dimethyl adipimidate, 1-ethyl-3-(3-di-methylaminopropyl)carbodiimide, and dimethyl-3,3'-dithiobispropionimidate. Essentially quantitative cross-linking of cytochrome c and flavodoxin was observed at low ionic strengths with the carbodiimide cross-linking reagent. An association constant of 4 X 10(4) M-1 was obtained between cytochrome c and flavodoxin at 88 mM ionic strength from analysis of the cross-linking studies. This value is similar to the association constant determined kinetically during the electron transfer reaction between cytochrome c and flavodoxin (Simondsen, R.P., Weber, P.C., Salemme, F.R., and Tollin, G. (1982) Biochemistry 21, 6366-6375), and suggests that the cross-linked complex may be similar to the precursor complex identified kinetically. A structural model for the flavodoxin-cytochrome c complex proposed by these workers is shown to be compatible with the present cross-linking results.  相似文献   

12.
Upon incubation of detergent-solubilized NADPH-cytochrome P-450 reductase and either cytochrome b5 or cytochrome c in the presence of a water-soluble carbodiimide, a 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), covalently cross-linked complex was formed. The cross-linked derivative was a heterodimer consisting of one molecule each of flavoprotein and cytochrome, and it was purified to 90% or more homogeneity. The binary covalent complex between the flavoprotein and cytochrome b5 was exclusively observed following incubation of all three proteins including NADPH-cytochrome P-450 reductase, cytochrome b5, and cytochrome c in L-alpha-dimyristoylphosphatidylcholine vesicles, and no heterotrimer could be identified. The isolated reductase-cytochrome b5 complex was incapable of covalent binding with cytochrome c in the presence of EDC. No clear band for covalent complex formation between PB-1 and reductase was seen with the present EDC cross-linking technique. More than 90% of the cross-linked cytochrome c in the purified derivative was rapidly reduced upon addition of an NADPH-generating system, whereas approximately 80% of the cross-linked cytochrome b5 was rapidly reduced. These results showed that in the greater part of the complexes, the flavin-mediated pathway for reduction of cytochrome c or cytochrome b5 by pyridine nucleotide was intact. When reconstituted into phospholipid vesicles, the purified amphipathic derivative could hardly reduce exogenously added cytochrome c, cytochrome b5, or PB-1, indicating that the cross-linked cytochrome shields the single-electron-transferring interface of the flavoprotein. These results suggest that the covalent cross-linked derivative is a valid model of the noncovalent functional electron-transfer complex.  相似文献   

13.
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c.  相似文献   

14.
Nakani S  Vitello LB  Erman JE 《Biochemistry》2006,45(48):14371-14378
Four covalent complexes between recombinant yeast cytochrome c and cytochrome c peroxidase (rCcP) were synthesized via disulfide bond formation using specifically designed protein mutants (Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580). One of the complexes, designated V5C/K79C, has cysteine residues replacing valine-5 in rCcP and lysine-79 in cytochrome c with disulfide bond formation between these residues linking the two proteins. The V5C/K79C complex has the covalently bound cytochrome c located on the back-side of cytochrome c peroxidase, approximately 180 degrees from the primary cytochrome c-binding site as defined by the crystallographic structure of the 1:1 noncovalent complex (Pelletier, H., and Kraut J. (1992) Science 258, 1748-1755). Three other complexes have the covalently bound cytochrome c located approximately 90 degrees from the primary binding site and are designated K12C/K79C, N78C/K79C, and K264C/K79C, respectively. Steady-state kinetic studies were used to investigate the catalytic properties of the covalent complexes at both 10 and 100 mM ionic strength at pH 7.5. All four covalent complexes have catalytic activities similar to those of rCcP (within a factor of 2). A comprehensive study of the ionic strength dependence of the steady-state kinetic properties of the V5C/K79C complex provides evidence for significant electrostatic repulsion between the two cytochromes bound in the 2:1 complex at low ionic strength and shows that the electrostatic repulsion decreases as the ionic strength of the buffer increases.  相似文献   

15.
We investigated the interaction between cytochrome c oxidase and its substrate cytochrome c by catalyzing the covalent linkage of the two proteins to yield 1 : 1 covalent enzyme-substrate complexes under conditions of low ionic strength. In addition to the 'traditional' oxidized complex formed between oxidized cytochrome c and the oxidized enzyme we prepared complexes under steady-state reducing conditions. Whereas for the 'oxidized' complex cytochrome c became bound exclusively to subunit II of the enzyme, for the 'steady-state' complex cytochrome c became bound to subunit II and two low molecular mass subunits, most likely VIb and IV. For both complexes we investigated: (a) the ability of the covalently bound cytochrome c to relay electrons into the enzyme, and (b) the ability of the covalently bound enzyme to catalyze the oxidation of unbound (exogenous) ferrocytochrome c. Steady-state spectral analysis (400-630 nm) combined with stopped-flow studies, confirmed that the bound cytochrome c mediated the efficient transfer of electrons from the reducing agent ascorbate to the enzyme. In the case of the latter, the half life for the ascorbate reduction of the bound cytochrome c and that for the subsequent transfer of electrons to haem a were both < 5 ms. In contrast the covalent complexes, when reduced, were found to be totally unreactive towards oxidized cytochrome c oxidase confirming that the previously observed reduction of haem a within the complexes occurred via intramolecular rather than intermolecular electron transfer. Additionally, stopped-flow analysis at 550 nm showed that haem a within both covalent complexes catalyzed the oxidation of exogenous ferrocytochrome c: The second order rate constant for the traditional complex was 0.55x10(6) m(-1) x s(-1) while that for the steady-state was 0.27x10(6) m(-1) x s(-1). These values were approximately 25-50% of those observed for 1 : 1 electrostatic complexes of similar concentrations. These results combined with those of the ascorbate and the electrophoresis studies suggest that electrons are able to enter cytochrome c oxidase via two independent pathways. We propose that during enzyme turnover the enzyme cycles between two conformers, one with a substrate binding site at subunit II and the other along the interface of subunits II, IV and VIb. Structural analysis suggests that Glu112, Glu113, Glu114 and Asp125 of subunit IV and Glu40, Glu54, Glu78, Asp35, Asp49, Asp73 and Asp74 of subunit VIb are residues that might possibly be involved.  相似文献   

16.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover.  相似文献   

17.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

18.
Oxidation of sulfite to sulfate by sulfite oxidase is inhibited when the enzyme is treated with reagents known to modify imidazole and carboxyl groups. Modification inhibits the oxidation of sulfite by the physiological electron acceptor cytochrome c, but not by the artificial acceptor ferricyanide. This indicates interference with reaction steps that follow the oxidation of sulfite by the enzyme's molybdenum cofactor. Reaction with diethylpyrocarbonate modifies ten histidines per enzyme monomer. Loss of activity is concomitant to the modification of only a single histidine residue. Inactivation takes place at the same rate in free sulfite oxidase and in the sulfite-oxidase--cytochrome-c complex. Blocking of carboxyl groups with water-soluble carbodiimides inactivates the enzyme. But none of the enzyme's carboxyl groups seems to be essential in the sense that its modification fully abolishes activity. The pattern of inactivation by chemical modification of sulfite oxidase is quite similar to that observed previously for cytochrome c peroxidase from yeast [Bosshard, H. R., B?nziger, J., Hasler, T. and Poulos, T. L. (1984) J. Biol. Chem. 259, 5683-5690; Bechtold, R. and Bosshard, H. R. (1985) J. Biol. Chem. 260, 5191-5200]. The two enzymes have very different structures yet share cytochrome c as a common substrate of which they recognize the same electron-transfer domain around the exposed heme edge.  相似文献   

19.
A covalent complex between purified rat liver microsomal NADPH-cytochrome P-450 reductase and horse cytochrome c was formed through cross-linking studies with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at low ionic strength. The purified cross-linked derivative shows that this product is a 1:1 complex containing one molecule each of the flavoprotein and cytochrome. The covalent complex had almost completely blocked the electron transfer from NADPH to exogenous cytochrome c or the rabbit liver microsomal cytochrome P-450 induced by phenobarbital, indicating that the cross-linked cytochrome c covers the electron-accepting site of the reductase. These results suggest that the covalently cross-linked derivative is a valid model of the noncovalent electron transfer complex. Although the exact number and site of the cross-linked location were not determinable, in cytochrome c the amide bond originates from Lys-13 and in reductase it might be at any one of six different side chain carboxyl groups in the two neighboring cluster acidic residues, Asp-207, -208, and -209, and Glu-213, Glu-214, and Asp-215. It is therefore proposed that the six clustered carboxyl groups on reductase are in an exposed location near the area where one heme edge comes close to the molecular surface.  相似文献   

20.
Ferricytochromes c from three species (horse, tuna, yeast) display sensitivity to variations in solution ionic strength or pH that is manifested in significant changes in the proton NMR spectra of these proteins. Irradiation of the heme 3-CH3 resonances in the proton NMR spectra of tuna, horse and yeast iso-1 ferricytochromes c is shown to give NOE connectivities to the phenyl ring protons of Phe82 as well as to the beta-CH2 protons of this residue. This method was used to probe selectively the Phe82 spin systems of the three cytochromes c under a variety of solution conditions. This phenylalanine residue has previously been shown to be invariant in all mitochondrial cytochromes c, located near the exposed heme edge in proximity to the heme 3-CH3, and may function as a mediator in electron transfer reactions [Louie, G. V., Pielak, G. J., Smith, M. & Brayer, G. D. (1988) Biochemistry 27, 7870-7876]. Ferricytochromes c from all three species undergo a small but specific structural rearrangement in the environment around the heme 3-CH3 group upon changing the solution conditions from low to high ionic strength. This structural change involves a decrease in the distance between the Phe82 beta-CH2 group and the heme 3-CH3 substituent. In addition, studies of the effect of pH on the 1H-NMR spectrum of yeast iso-1 ferricytochrome c show that the heme 3-CH3 proton resonance exhibits a pH-dependent shift with an apparent pK in the range of 6.0-7.0. The chemical shift change of the yeast iso-1 ferricytochrome c heme 3-CH3 resonance is not accompanied by an increase in the linewidth as previously described for horse ferricytochrome c [Burns, P. D. & La Mar, G. N. (1981) J. Biol. Chem. 256, 4934-4939]. These spectral changes are interpreted as arising from an ionization of His33 near the C-terminus. In general, the larger spectral changes observed for the resonances in the vicinity of the heme 3-CH3 group in yeast iso-1 ferricytochrome c with changes in solution conditions, relative to the tuna and horse proteins, suggest that the region around Phe82 is more open and that movement of the Phe82 residue is less constrained in yeast ferricytochrome c. Finally, it is demonstrated here that both the heme 8-CH3 and the 7 alpha-CH resonances of yeast ferricytochrome c titrate with p2H and exhibit apparent pK values of approximately 7.0. The titrating group responsible for these spectral changes is proposed to be His39.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号