首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP‐dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.  相似文献   

2.
The effect of phosphorylation of pre interleukin 1 alpha (IL 1 alpha) on its association with various phospholipids was investigated. We prepared genetically engineered truncated human pre IL 1 alpha (residues 64 to 271) and phosphorylated this pre IL 1 alpha in vitro by using the catalytic subunit of cAMP-dependent protein kinase. Phosphorylated truncated pre IL 1 alpha selectively binds to acidic phospholipids including phosphatidic acid, phosphatidylserine, and phosphatidylinositol, but not to other phospholipids (phosphatidylcholine and phosphatidylethanolamine). This binding required divalent cations: Ca2+ or Mn2+, but not Mg2+. In order to obtain half-maximal binding of pre IL 1 alpha to phosphatidic acid or phosphatidylserine, Ca2+ between 5 and 100 microM was required. Unphosphorylated pre IL 1 alpha did not bind to phosphatidylserine, indicating that phosphorylation is required for this binding. Phosphorylated pre IL 1 alpha did not bind to intact peripheral blood mononuclear cells irrespective of lipopolysaccharide stimulation, but did bind to membrane vesicles prepared from these cells in the presence of calcium. Furthermore, phosphorylated pre IL 1 alpha bound only to inside-out ghosts, but not right-side-out ghosts, prepared from human red blood cells. Taken together, these data suggest that phosphorylated pre IL 1 alpha binds to the inner surface of plasma membrane in a Ca2(+)- and phospholipid-dependent manner.  相似文献   

3.
Only capacitated sperm cells are able to fertilize egg cells, and this process is triggered by high levels of bicarbonate. Bicarbonate renders the plasma membrane more fluid, which is caused by protein kinase A (PKA)-mediated alterations in the phospholipid (PL) bilayer. We studied exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in human sperm cells. Surface exposure of PS and PE on sperm cell activation in vitro was found to be bicarbonate dependent and restricted to the apical area of the head plasma membrane. The PL scrambling in bicarbonate-triggered human sperm was not related to apoptosis, because the incubated cells did not show any signs of caspases or degeneration of mitochondria or DNA. The PL scramblase (PLSCR) gene family has been implicated in this nonspecific, bidirectional PL movement. A 25-kDa isoform of PLSCR was identified that was homogeneously distributed in human sperm cells. We propose that compartment-dependent activation of PKA is required for the surface exposure of aminophospholipids at the apical plasma membrane of sperm cells. Bicarbonate-induced PL scrambling appears to be an important event in the capacitation process, because the entire intact scrambling sperm subpopulation showed extensive tyrosine phosphorylation, which was absent in the nonscrambling subpopulation. The proportion of live cells with PL scrambling corresponded with that showing capacitation-specific chlortetracyclin staining.  相似文献   

4.
Effect of anandamide on erythrocyte survival.   总被引:1,自引:0,他引:1  
The endocannabinoid anandamide (Arachidonylethanolamide, AEA) is known to induce apoptosis in a wide variety of nucleated cells. The present study explored whether anandamide induces suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are phagocytosed and thus cleared from circulating blood. Triggers of eryptosis include increase of cytosolic Ca2+ activity, formation of PGE(2), oxidative stress and excessive cell shrinkage. Erythrocyte Ca2+ activity was estimated from Fluo3 fluorescence, phosphatidylserine exposure from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to anandamide (= 2.5 microM) increased cytosolic Ca2+ activity, enhanced the percentage of annexin V binding erythrocytes and decreased erythrocyte forward scatter, effects significantly blunted in the presence of cycloxygenase inhibitors acetylsalicylic acid (50 microM) or ibuprofen (100 microM) and in the nominal absence of extracellular Ca2+. Anandamide further enhanced the stimulating effects of hypertonic (addition of 550 mM sucrose) or isotonic (isosmotic replacement of Cl- with gluconate) cell shrinkage on annexin V binding. The present observations demonstrate that anandamide increases cytosolic Ca2+ activity, thus leading to cell shrinkage and cell membrane scrambling of mature erythrocytes.  相似文献   

5.
Bucki R  Giraud F  Sulpice JC 《Biochemistry》2000,39(19):5838-5844
Transmembrane phospholipid redistribution (scrambling), leading to exposure of phosphatidylserine on the cell surface, plays a physiological role to induce platelet procoagulant activity and clearance of injured or apoptotic cells. Scrambling is generally attributed to an increase in intracellular Ca(2+) and would be mediated by a protein (scramblase), whose activity could be modulated by cofactors. We reported previously that phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a positive regulator of Ca(2+)-induced scrambling. We show here, using inside-out vesicles from erythrocyte membranes, that a pleckstrin homology (PH) domain, which interacts with high affinity with PIP(2), inhibited Ca(2+)-induced scrambling, confirming the role of PIP(2). As Ca(2+) is known to interact with PIP(2) and to promote the formation of lateral domains of acidic phospholipids in membranes, we investigated whether PIP(2) domain formation could be involved in scrambling. Spermine, polylysine, and MARCKS (151-175) peptide caused scrambling in parallel to their reported ability to form domains of acidic phospholipids, including PIP(2). Similarly, neomycine, another PIP(2)-interacting polycation, induced scrambling. A PIP(2) antibody was also found to induce scrambling, presumably by a similar mechanism, since phospholipid antibodies are known to promote phospholipid capping. In conclusion, Ca(2+) is not the sole inducer of scrambling, and formation of PIP(2) domains could play a critical role in this process.  相似文献   

6.
The phospholipids in plasma membranes of erythrocytes, as well as platelets, lymphocytes and other cells are asymmetrically distributed, with sphingomyelin and phosphatidylcholine residing predominantly in the outer leaflet of the bilayer, and phosphatidylserine and phosphatidylethanolamine in the inner leaflet. It is known that Ca2+ can disrupt the phospholipid asymmetry by activation of a protein known as phospholipid scramblase, which affects bidirectional phospholipid movement in a largely non-selective manner. As Ca2+ also inhibits aminophospholipid translocase, whose Mg(2+)-ATPase activity is responsible for active translocation of aminophospholipids from the outer to the inner leaflet, it is important to accurately determine the sensitivity of scramblase to intracellular free Ca2+. In the present study we have utilized the favourable Kd of Mag-fura-2 for calcium in the high micromolar range to determine free Ca2+ levels associated with lipid scrambling in resealed human red cell ghosts. The Ca2+ sensitivity was measured in parallel to the translocation of a fluorescent-labelled lipid incorporated into the ghost bilayer. The phospholipid scrambling was found to be half-maximally activated at 63-88 microM free intracellular Ca2+. The wider applicability of the method and the physiological implications of the calcium sensitivity determined is discussed.  相似文献   

7.
Blebbistatin, a myosin II inhibitor, interferes with myosin-actin interaction and microtubule assembly. By influencing cytoskeletal dynamics blebbistatin counteracts apoptosis of several types of nucleated cells. Even though lacking nuclei and mitochondria, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include energy depletion and osmotic shock, which enhance cytosolic Ca(2+) activity with subsequent Ca(2+)-sensitive cell shrinkage and cell membrane scrambling. The present study explored the effect of blebbistatin on eryptosis. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, cell volume from forward scatter in fluorescence-activated cell sorting analysis and cytosolic Ca(2+) concentration from Fluo3 fluorescence. Exposure to blebbistatin on its own (1-50 μM) did not significantly modify cytosolic Ca(2+) concentration, forward scatter, or annexin V binding. Glucose depletion (48 h) was followed by a significant increase of Fluo3 fluorescence and annexin V binding, effects significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 10 μM). Osmotic shock (addition of 550 mM sucrose) again significantly increased Fluo3 fluorescence and annexin binding, effects again significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 25 μM). The present observations disclose a novel effect of blebbistatin, i.e., an influence on Ca(2+) entry and suicidal erythrocyte death following energy depletion and osmotic shock.  相似文献   

8.
Apoptosis is generally accompanied by a late phase of ceramide (Cer) production, the significance of which is unknown. This study describes a previously unrecognized link between Cer accumulation and phosphatidylserine (PS) exposure at the cell surface, a characteristic of the execution phase of apoptosis resulting from a loss of plasma membrane phospholipid asymmetry. Using a fluorescent sphingomyelin (SM) analogue, N-(N-[6-[(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino]caproyl]-sphingosylphosphorylcholine (C(6)-NBD-SM), we show that Cer is derived from SM, initially located in the outer leaflet of the plasma membrane, which gains access to a cytosolic SMase by flipping to the inner leaflet in a process of lipid scrambling paralleling PS externalization. Lipid scrambling is both necessary and sufficient for SM conversion: Ca(2+) ionophore induces both PS exposure and SM hydrolysis, whereas scrambling-deficient Raji cells do not show PS exposure or Cer formation. Cer is not required for mitochondrial or nuclear apoptotic features since these are still observed in Raji cells. SM hydrolysis facilitates cholesterol efflux to methyl-beta-cyclodextrin, which is indicative of a loss of tight SM-cholesterol interaction in the plasma membrane. We provide evidence that these biophysical alterations in the lipid bilayer are essential for apoptotic membrane blebbing/vesiculation at the cell surface: Raji cells show aberrant apoptotic morphology, whereas replenishment of hydrolyzed SM by C(6)- NBD-SM inhibits blebbing in Jurkat cells. Thus, SM hydrolysis, during the execution phase of apoptosis, results from a loss of phospholipid asymmetry and contributes to structural changes at the plasma membrane.  相似文献   

9.
The capacitating agent bicarbonate/CO(2) has been shown to induce profound changes in the architecture and dynamics within the sperm's plasma membrane lipid bilayer via a cAMP-dependent protein phosphorylation signaling pathway. Here we have investigated the effect of bicarbonate on surface exposure of endogenous aminophospholipids in boar spermatozoa, detecting phosphatidylserine (PS) with fluorescein-conjugated annexin V and phosphatidylethanolamine (PE) with fluorescein-conjugated streptavidin/biotinylated Ro-09-0198. Flow cytometric analyses revealed that incubation with 15 mM bicarbonate induced 30%-70% of live acrosome-intact cells to expose PE very rapidly; this exposure was closely related to a decrease in lipid packing order as detected by enhanced binding of merocyanine 540. PS exposure was detectable in the same proportion of cells, though its expression was slower. Confocal microscopy revealed that exposure of aminophospholipids in intact cells was restricted to the anterior acrosomal region of the head plasma membrane. Aminophospholipid exposure, merocyanine stainability, and a subsequent migration of cholesterol to the apical region of the head plasma membrane, were all under the control of the cAMP-dependent protein phosphorylation pathway. The close coupling of decreased lipid packing order with exposure of PE led us to conclude that bicarbonate was inducing phospholipid scrambling (i.e., collapse of asymmetric transverse distribution), and that the scrambling was a prerequisite for cholesterol relocation. There was no evidence whatever that the bicarbonate-induced scrambling was an apoptotic process. It was not accompanied by major loss of viability or by DNA degeneration or by loss of mitochondrial function, and it could not be blocked by the broad-specificity caspase inhibitors zVAD-fmk and BocD-fmk. In the absence of bicarbonate, scrambling could not be induced by the apoptotic agents UV, staurosporine, or cycloheximide. Bicarbonate-induced phospholipid scrambling thus appears to be an important and early physiological event in the capacitation process.  相似文献   

10.
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.  相似文献   

11.
Prostaglandin-E2 (PGE2) is known to trigger suicidal death of nucleated cells (apoptosis) and enucleated erythrocytes (eryptosis). In erythrocytes PGE2 induced suicidal cell death involves activation of nonselective cation channels leading to Ca2+ entry followed by cell shrinkage and triggering of Ca2+ sensitive cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. The present study was performed to explore whether PGE2 induces apoptosis of nucleated cells similarly through cation channel activation and to possibly disclose the molecular identity of the cation channels involved. To this end, Ca2+ activity was estimated from Fluo3 fluorescence, mitochondrial potential from DePsipher fluorescence, phosphatidylserine exposure from annexin binding, caspase activation from caspAce fluorescence, cell volume from FACS forward scatter, and DNA fragmentation utilizing a photometric enzyme immunoassay. Stimulation of K562 human leukaemia cells with PGE2 (50 microM) increased cytosolic Ca2+ activity, decreased forward scatter, depolarized the mitochondrial potential, increased annexin binding, led to caspase activation and resulted in DNA fragmentation. Gene silencing of the Ca2+-permeable transient receptor potential cation channel TRPC7 significantly blunted PGE2-induced triggering of PS exposure and DNA fragmentation. In conclusion, K562 cells express Ca2+-permeable TRPC7 channels, which are activated by PGE2 and participate in the triggering of apoptosis.  相似文献   

12.
Phospholipid scramblase induces nonspecific bidirectional movement of phospholipids across the membrane during cell activation and has been proposed to mediate the appearance of phosphatidylserine (PS) in the plasma membrane outer leaflet during apoptosis, a cell surface change that is critical for apoptotic cell removal. We report here that protein kinase C (PKC) delta plays an important role in activated transbilayer movement of phospholipids and surface PS exposure by directly enhancing the activity of phospholipid scramblase. Specific inhibition of PKCdelta by rottlerin prevented both apoptosis- and activation-induced scramblase activity. PKCdelta was either selectively cleaved and activated in a caspase 3-dependent manner (during apoptosis) or translocated to the plasma membrane (in stimulated cells) and could directly phosphorylate scramblase immunoprecipitated from Jurkat cells. Furthermore, reconstitution of PKCdelta and scramblase, but not scramblase or PKCdelta alone in Chinese hamster ovary cells demonstrated enhanced scramblase activity.  相似文献   

13.
Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+ activity, which may result from treatment with the Ca2+ ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.  相似文献   

14.
Unconjugated bilirubin increasingly binds to erythrocytes as the bilirubin-to-albumin molar ratio exceeds unity, leading to toxic manifestations that can culminate in cell lysis. Our previous studies showed that bilirubin induces the release of lipids from erythrocyte membranes. In the present work, those studies were extended in order to characterize the alterations of membrane lipid composition and evaluate whether bilirubin leads to a loss of phospholipid asymmetry. To this end, human erythrocytes were incubated with several bilirubin-to-albumin molar ratios (0.5 to 5), and cholesterol as well as the total and the individual classes of phospholipids were determined. To detect erythrocytes with phosphatidylserine at the outer surface, the number of annexin V-positive cells was determined following incubation with bilirubin, fixing its molar ratio to albumin at 3. The results demonstrate profound changes in erythrocyte membrane composition, including modified cholesterol and phospholipid content. The release of membrane cholesterol, as well as of total and individual classes of phospholipids at molar ratios ≥1, indicates that damage of erythrocytes may occur in severely ill jaundiced neonates. The loss of the inner-located phospholipids, phosphatidylethanolamine and phosphatidylserine, points to a redistribution of phospholipids in the membrane bilayer. This was confirmed by the exposure of phosphatidylserine at the outer cell surface. In conclusion, this study demonstrates that bilirubin induces loss of membrane lipids and externalization of phosphatidylserine in human erythrocytes. These features may facilitate hemolysis and erythrophagocytosis, thus contributing to enhanced bilirubin production and anemia during severe neonatal hyperbilirubinemia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Kamp D  Sieberg T  Haest CW 《Biochemistry》2001,40(31):9438-9446
An increase of the intracellular Ca(2+) concentration in erythrocytes is known to activate rapid nonspecific bidirectional translocation of membrane-inserted phospholipid probes and to decrease the asymmetric distribution of endogenous membrane phospholipids. These scrambling effects are now shown to be suppressed by pretreatment of cells with the essentially impermeable reagents 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 2,4,6-trinitrobenzenesulfonate. The inhibitory effects are no longer observed during renewed activation of scrambling following a first transient activation by Ca(2+). Assuming the involvement of the human scramblase, this suggests a conformational alteration of this protein during activation by Ca(2+). Marked suppression of scrambling activity is also observed in cells pretreated with the disulfide reducing agent dithioerythritol which can be reverted by the SH oxidizing agent diamide. This indicates the importance of intramolecular and/or intersubunit disulfide bonds for the function of the scramblase. On the other hand, treatment of cells with the SH reagents N-ethylmaleimide and phenylarsine oxide enhances Ca(2+)-activated scrambling and diminution of asymmetry of membrane phospholipids. This suggests an allosteric connection of several protein SH groups to the translocation mechanism. The inhibitors retain their strong suppressive effects. Besides covalent modification, addition of oligomycin highly stimulates and addition of clotrimazole suppresses the Ca(2+)-activated translocation. No evidence for a role of the ATP-binding cassette transporter ABCA1 in the Ca(2+)-activated outward translocation is obtained. Suppression of phospholipid scrambling by dithioerythritol inhibits Ca(2+)-induced spheroechinocytosis and reduces the extent of subsequent microvesiculation. Scrambling of endogenous phospholipids is proposed to induce echinocytosis and to have only a stimulatory effect on microvesiculation.  相似文献   

16.
Activation of membrane cholesterol by displacement from phospholipids   总被引:1,自引:0,他引:1  
We tested the hypothesis that certain membrane-intercalating agents increase the chemical activity of cholesterol by displacing it from its low activity association with phospholipids. Octanol, 1,2-dioctanoyl-sn-glycerol (a diglyceride), and N-hexanoyl-D-erythrosphingosine (a ceramide) were shown to increase both the rate of transfer and the extent of equilibrium partition of human red blood cell cholesterol to methyl-beta-cyclodextrin. These agents also promoted the interaction of the sterol with two cholesterol-specific probes, cholesterol oxidase and saponin. Expanding the pool of bilayer phospholipids with lysophosphatides countered these effects. The three intercalators also protected the red cells against lysis by cholesterol depletion as if substituting for the extracted sterol. As is the case for excess plasma membrane cholesterol, treating human fibroblasts with octanol, diglyceride, or ceramide stimulated the rapid inactivation of their hydroxymethylglutaryl-CoA reductase, presumably through an increase in the pool of endoplasmic reticulum cholesterol. These data supported the stated hypothesis and point to competition between cholesterol and endogenous and exogenous intercalators for association with membrane phospholipids. We also describe simple screens using red cells in a microtiter well format to identify intercalating agents that increase or decrease the activity of membrane cholesterol.  相似文献   

17.
Maintenance of phospholipid asymmetry of the plasma membrane is essential for cells to prevent phagocytic removal or acceleration of coagulation. Photodynamic treatment (PDT), which relies on the generation of reactive oxygen species to achieve inactivation of pathogens, might be a promising approach in the future for decontamination of red blood cell concentrates. To investigate whether PDT affects phospholipid asymmetry, erythrocytes were illuminated in the presence of 1,9-dimethyl-methylene blue (DMMB) as photosensitizer and subsequently labeled with FITC-labeled annexin V. This treatment resulted in about 10% annexin V positive cells, indicating exposure of phosphatidylserine (PS). Treatment of erythrocytes with N-ethylmaleimide (NEM) prior to illumination, to inhibit inward translocation of PS via the aminophospholipid translocase, resulted in enhanced PS exposure, while treatment with H(2)O(2) (previously shown to inhibit phospholipid scrambling) greatly diminished PS exposure, indicating the induction of phospholipid scrambling by PDT. Only erythrocytes illuminated in the presence of DMMB showed translocation of NBD-phosphatidylcholine (NBD-PC), confirming scrambling induction. Double label experiments indicated that PS exposure does not occur without concurrent scrambling activity. Induction of scrambling was only moderately affected by Ca(2+) depletion of the cells. In contrast, scavengers of singlet oxygen were found to prevent phospholipid scrambling induced by PDT. The results of this study show that phospholipid scrambling is induced in human erythrocytes by exposure to singlet oxygen.  相似文献   

18.
Murine neuroblastoma cells (clone N-2A) grown in suspension (spinner cells) or attached on a plastic surface (monolayer cells) were used in studies of the phospholipid and cholesterol composition of whole cells, primary plasma membranes, plasma membranes internalized during phagocytosis of polystyrene latex beads, mitochondria and microsomes. Monolayer cells contained higher concentrations of total phospholipid, phosphatidylserine and phosphatidylcholine, and lower concentration of phosphatidylethanolamine than spinner cells. The cholesterol levels and the relative proportions of the various phospholipids were similar in both cell types except phosphatidylethanolamine and sphingomyelin whose proportions were lower in monolayer cells. The primary plasma membranes of the two cell types differed significantly in the relative proportions of all phospholipids, except sphingomyelin, and the phospholipid to protein and the cholesterol to protein ratios were all higher in the membranes of spinner cells. In contrast to these results, all the phospholipid to protein and the cholesterol to protein ratios of the internalized plasma membranes were higher in monolayer than in spinner cells, and the proportions of all phospholipids, except phosphatidylethanolamine, were similar in both cell types. The membrane distributions of individual phospholipids and cholesterol were inferred from comparison of the phospholipid and cholesterol compositions of primary plasma membranes and plasma membranes internalized during phagocytosis of polystyrene beads. The results are consistent with a non-random distribution of most phospholipids in both spinner and monolayer cells, but the patterns of these distributions were different in the two cell types. With regard to cholesterol the results are compatible with a random or a heterogeneous distribution. All the phospholipid to protein ratios of the mitochondrial fraction of both cell types were lower than those of the plasma membranes. However, these ratios of the microsomal fraction were higher than those of the plasma membranes of monolayer cells, whereas they were comparable, with a few exceptions, to those of spinner cell membranes. The cholesterol to phospholipid molar ratios of plasma membranes were 6.4 and 4.3 fold greater than those of the mitochondrial and microsomal fractions, respectively.  相似文献   

19.
The superoxide-generating respiratory burst oxidase is an integral membrane enzyme found in the plasma membrane of polymorphonuclear leukocytes (neutrophils). NADPH-dependent superoxide generation is seen in isolated plasma membranes and in their detergent extracts following activation of the intact cells with phorbol myristate acetate. We have herein examined the effects of phospholipids on the activity of the solubilized oxidase. Solubilization of plasma membranes with 0.5% each of Tween 20 plus deoxycholate resulted in an approximately 2-fold enhancement of activity. Inclusion of phospholipids in the extraction medium resulted in further activation. At 1.0 mg/ml the order of effectiveness was phosphatidylserine (PS) greater than cardiolipin greater than phosphatidylethanolamine greater than phosphatidylinositol; phosphatidylcholine and phosphorylated inositol lipids were not effective. The concentrations required for half-maximal activation by PS and phosphatidylethanolamine were 85 and 200 micrograms/ml, respectively. When PS was used at a maximally activating concentration (0.5 mg/ml), the activity was enhanced 3-5-fold. Detergent solubilization alone elevated the Km of the oxidase for NADPH from 68 microM in intact plasma membranes to 123 microM, but inclusion of PS with detergent restored the Km to near or below that seen in intact membranes. PS also increased the Vmax by a factor of 2-3, but had no effect on the pH optimum. A plot of the activity versus enzyme concentration was linear when membranes were used, but activity showed a quadratic dependence on concentration in solubilized membrane, with lower than expected activity at lower enzyme concentration. PS restored linearity of the concentration-activity plot. The activation by PS was not influenced by the addition of Ca2+, EGTA, or dioctanoylglycerol, indicating that activation was not dependent on protein kinase C. These results implicate phosphatidylserine as a direct effector of the NADPH-oxidase.  相似文献   

20.
Membrane-perturbing agents that cause transformation of biconcave erythrocytes into echinocytes or stomatocytes were used to investigate the influence of erythrocyte shape on the rate of Ca(2+)-induced scrambling of phospholipids. Erythrocytes were treated with a variety of lipid-soluble compounds to induce these shape changes, followed by incubation with calcium and ionomycin to activate lipid scramblase. Prothrombinase activity of the cells was used to monitor the rate of surface exposure of phosphatidylserine, which is taken as a measure of scramblase activity. Echinocytes show an enhanced rate of scrambling, whereas stomatocytes show a reduced rate, relative to normocytes. This phenomenon appears to correlate with enhanced and diminished micro-exovesicle shedding from echinocytes and stomatocytes, respectively. It is concluded that the rate of calcium-induced phosphatidylserine exposure (rate of lipid scrambling) in erythrocytes depends for a considerable part on the cells' ability to form microvesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号