首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoimmunofluorescent localization of severin in Dictyostelium amoebae   总被引:3,自引:0,他引:3  
Severin is a 40-kDa Ca2+-activated protein from Dictyostelium that rapidly fragments and disassembles actin filaments in vitro (S.S. Brown, K. Yamamoto, and J.A. Spudich, J. Cell Biol. 93, 205-210, 1982; and K. Yamamoto, J.D. Pardee, J. Reidler, L. Stryer, and J.A. Spudich. J. Cell Biol. 95, 711-719, 1982). To determine if severin is colocalized with actin filaments in vivo, we have used the agar-overlay technique of S. Yumura, H. Mori, and Y. Fukui (J. Cell Biol. 99, 894-899, 1984) to examine the intracellular locations of severin and F-actin in vegetative Dictyostelium amoebae. In rounded cells taken from suspension culture severin colocalized with F-actin at cortical edges while maintaining an endoplasmic presence. Both severin and F-actin were present throughout nascent pseudopods of motile cells, while severin appeared concentrated at the leading edge of fully developed pseudopods. Amoebae feeding on a bacterial lawn formed large phagocytic vesicles that were surrounded by an extensive cell cortex rich in severin. Streaming cells entering aggregates during the Dictyostelium developmental cycle showed severin staining throughout the cytoplasm with F-actin at the cortex. The preferential localization of severin in cytoplasmic regions of vegetative cells undergoing extensive actin cytoskeletal rearrangement prompts consideration of a role for severin-mediated disruption of actin filament networks during pseudopod extension and phagocytosis.  相似文献   

2.
Severin, a 40,000-dalton protein from Dictyostelium that disassembles actin filaments in a Ca2+ -dependent manner, was purified 500-fold to greater than 99% homogeneity by modifications of the procedure reported by Brown, Yamamoto, and Spudich (1982. J. Cell Biol. 93:205-210). Severin has a Stokes radius of 29 A and consists of a single polypeptide chain. It contains a single methionyl and five cysteinyl residues. We studied the action of severin on actin filaments by electron microscopy, viscometry, sedimentation, nanosecond emission anisotropy, and fluorescence energy transfer spectroscopy. Nanosecond emission anisotropy of fluoresence-labeled severin shows that this protein changes its conformation on binding Ca2+. Actin filaments are rapidly fragmented on addition of severin and Ca2+, but severin does not interact with actin filaments in the absence of Ca2+. Fluorescence energy transfer measurements indicate that fragmentation of actin filaments by severin leads to a partial depolymerization (t1/2 approximately equal to 30 s). Depolymerization is followed by exchange of a limited number of subunits in the filament fragments with the disassembled actin pool (t1/2 approximately equal to 5 min). Disassembly and exchange are probably restricted to the ends of the filament fragments since only a few subunits in each fragment participate in the disassembly or exchange process. Steady state hydrolysis of ATP by actin in the presence of Ca2+-severin is maximal at an actin: severin molar ratio of approximately 10:1, which further supports the inference that subunit exchange is limited to the ends of actin filaments. The observation of sequential depolymerization and subunit exchange following the fragmentation of actin by severin suggests that severin may regulate site-specific disassembly and turnover of actin filament arrays in vivo.  相似文献   

3.
L Eichinger  M Schleicher 《Biochemistry》1992,31(20):4779-4787
Severin is a Ca(2+)-activated actin-binding protein that nucleates actin assembly and severs and caps the fast growing ends of actin filaments. It consists of three highly conserved domains. To investigate the domain structure of severin, we constructed genetically the N-terminal domain 1, the middle domain 2, and the tandem domains 2 + 3. Their interaction with actin, Ca2+, and lipids was characterized. Domain 1 contains the F-actin capping and a Ca(2+)-binding site [Eichinger, L., Noegel, A. A., & Schleicher, M. (1991) J. Cell Biol. 112, 665-676]. Binding of domain 2 to actin filaments was Ca(2+)-dependent and saturated at a 1:1 molar ratio. In the presence of Ca2+, about 1.5 mol of domains 2 + 3 bound per mole of F-actin subunit. Scatchard analysis gave a Kd of 18 microM for the interaction of domain 2 with F-actin subunits and a Kd of 1.6 microM for domains 2 + 3. Low-shear viscometry, electron microscopy, and low-speed sedimentation assays showed that domains 2 + 3 induced bundling of actin filaments. The influence of PIP2 micelles on the different activities of severin was assayed using native severin and N- and C-terminally truncated fragments. Severin contains at least two PIP2-binding sites since the activities of the two nonoverlapping severin fragments domain 1 and domains 2 + 3 were inhibited by PIP2. The specificity of severin-phospholipid interaction was investigated by studying the regulation of native severin by PIP2 and other pure or mixed phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
T D Pollard  J A Cooper 《Biochemistry》1984,23(26):6631-6641
The current view of the mechanism of action of Acanthamoeba profilin is that it binds to actin monomers, forming a complex that cannot polymerize [Tobacman, L. S., & Korn, E. D. (1982) J. Biol. Chem. 257, 4166-4170; Tseng, P., & Pollard, T. D. (1982) J. Cell Biol. 94, 213-218; Tobacman, L. S., Brenner, S. L., & Korn, E. D. (1983) J. Biol. Chem. 258, 8806-8812]. This simple model fails to predict two new experimental observations made with Acanthamoeba actin in 50 mM KC1, 1 mM MgCl2, and 1 mM EGTA. First, Acanthamoeba profilin inhibits elongation of actin filaments far more at the pointed end than at the barbed end. According, to the simple model, the Kd for the profilin-actin complex is less than 5 microM on the basis of observations at the pointed end and greater than 50 microM for the barbed end. Second, profilin inhibits nucleation more strongly than elongation. According to the simple model, the Kd for the profilin-actin complex is 60-140 microM on the basis of two assays of elongation but 2-10 microM on the basis of polymerization kinetics that reflect nucleation. These new findings can be explained by a new and more complex model for the mechanism of action that is related to a proposal of Tilney and co-workers [Tilney, L. G., Bonder, E. M., Coluccio, L. M., & Mooseker, M. S. (1983) J. Cell Biol. 97, 113-124]. In this model, profilin can bind both to actin monomers with a Kd of about 5 microM and to the barbed end of actin filaments with a Kd of about 50-100 microM. An actin monomer bound to profilin cannot participate in nucleation or add to the pointed end of an actin filament. It can add to the barbed end of a filament. When profilin is bound to the barbed end of a filament, actin monomers cannot bind to that end, but the terminal actin protomer can dissociate at the usual rate. This model includes two different Kd's--one for profilin bound to actin monomers and one for profilin bound to an actin molecule at the barbed end of a filament. The affinity for the end of the filament is lower by a factor of 10 than the affinity for the monomer, presumably due to the difference in the conformation of the two forms of actin or to steric constraints at the end of the filament.  相似文献   

5.
The regulation of striated muscle contraction involves changes in the interactions of troponin and tropomyosin with actin thin filaments. In resting muscle, myosin-binding sites on actin are thought to be blocked by the coiled-coil protein tropomyosin. During muscle activation, Ca2+ binding to troponin alters the tropomyosin position on actin, resulting in cyclic actin-myosin interactions that accompany muscle contraction. Evidence for this steric regulation by troponin-tropomyosin comes from X-ray data [Haselgrove, J.C., 1972. X-ray evidence for a conformational change in the actin-containing filaments of verterbrate striated muscle. Cold Spring Habor Symp. Quant. Biol. 37, 341-352; Huxley, H.E., 1972. Structural changes in actin and myosin-containing filaments during contraction. Cold Spring Habor Symp. Quant. Biol. 37, 361-376; Parry, D.A., Squire, J.M., 1973. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75, 33-55] and electron microscope (EM) data [Spudich, J.A., Huxley, H.E., Finch, J., 1972. Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J. Mol. Biol. 72, 619-632; O'Brien, E.J., Gillis, J.M., Couch, J., 1975. Symmetry and molecular arrangement in paracrystals of reconstituted muscle thin filaments. J. Mol. Biol. 99, 461-475; Lehman, W., Craig, R., Vibert, P., 1994. Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368, 65-67] each with its own particular strengths and limitations. Here we bring together some of the latest information from EM analysis of single thin filaments from Pirani et al. [Pirani, A., Xu, C., Hatch, V., Craig, R., Tobacman, L.S., Lehman, W. (2005). Single particle analysis of relaxed and activated muscle thin filaments. J. Mol. Biol. 346, 761-772], with synchrotron X-ray data from non-overlapped muscle fibres to refine the models of the striated muscle thin filament. This was done by incorporating current atomic-resolution structures of actin, tropomyosin, troponin and myosin subfragment-1. Fitting these atomic coordinates to EM reconstructions, we present atomic models of the thin filament that are entirely consistent with a steric regulatory mechanism. Furthermore, fitting the atomic models against diffraction data from skinned muscle fibres, stretched to non-overlap to preclude crossbridge binding, produced very similar results, including a large Ca2+-induced shift in tropomyosin azimuthal location but little change in the actin structure or apparent alteration in troponin position.  相似文献   

6.
《The Journal of cell biology》1985,101(4):1236-1244
Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J. Biol. Chem. 259:7473-7479). The effects of platelet gelsolin and the binary gelsolin-actin complex on the depolymerization kinetics of rabbit skeletal muscle actin were studied by diluting pyrenyl F-actin into gelsolin or complex-containing buffers; a decrease in fluorescence represents disassembly of filaments. Dilution of F- actin to below the critical concentration required for filament assembly gave a biphasic depolymerization curve with both fast and slow components. Dilution into buffers containing gelsolin, as GCa2, increased the rate of depolymerization and gave a first order decay. The rate of decrease in fluorescence was found to be gelsolin concentration dependent. Electron microscopy of samples taken shortly after dilution into GCa2 showed a marked reduction in filament length consistent with filament severing and an increase in the number of ends. Conversely, occupancy of the EGTA-stable actin-binding site by an actin monomer eliminated the severing activity. Dilution of F-actin into the gelsolin-actin complex, either as GA1Ca1 or GA1Ca2, resulted in a decrease in the rate of depolymerization that was consistent with filament end capping. This result indicates that the EGTA-stable binding site is required and must be unoccupied for filament severing to occur. The effectiveness of gelsolin, GCa2, in causing filament depolymerization was dependent upon the ionic conditions: in KCI, actin filaments appeared to be more stable and less susceptible to gelsolin, whereas in Mg2+, actin filaments were more easily fragmented. Finally, a comparison of the number of kinetically active ends generated when filaments were diluted into gelsolin versus the number formed when gelsolin can function as a nucleation site suggests that gelsolin may sever more than once. The data are consistent with a mechanism where gelsolin, with both actin-binding sites unoccupied, can sever but not cap F-actin. Occupancy of the EGTA-stable binding site yields a gelsolin-actin complex that can no longer sever filaments, but can cap filament ends.  相似文献   

7.
Plasma gelsolin formed a very tight 1:2 complex with G-actin in the presence of Ca2+, but no interaction between gelsolin and G-actin was detected in the presence of excess EGTA. However, the 1:2 complex dissociated into a 1:1 gelsolin:actin complex and monomeric actin when excess EGTA was added. Plasma gelsolin bound tightly to the barbed ends of actin filaments and also severed filaments in the presence of Ca2+ and bound weakly to the filament barbed end in the presence of EGTA. The 1:2 gelsolin-actin complex bound to the barbed ends of filaments but did not sever them. By blocking the barbed end of filaments with plasma gelsolin, we determined the critical concentration at the pointed end in 1 mM MgCl2 and 0.2 mM ATP to be 4 microM. The dissociation rate constant for ADP-G-actin from the pointed end was estimated to be about 0.4 s-1 and the association rate constant to be about 5 X 10(4) M-1 s-1. Finally, we obtained evidence that plasma gelsolin accelerates but does not bypass the nucleation step and, therefore, that the concentration of gelsolin does not directly determine the concentration of filaments polymerized in its presence. Thus, gelsolin-capped filaments may not provide an absolutely reliable method for determining the rate constant for the association of ATP-G-actin at the pointed ends of filaments, but a reasonable estimate would be 1 X 10(5) M-1 s-1 in 1 mM MgCl2 and 0.2 mM ATP.  相似文献   

8.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

9.
The 110-kD protein-calmodulin complex (110K-CM) of the intestinal brush border serves to laterally tether microvillar actin filaments to the plasma membrane. Results from several laboratories have demonstrated that this complex shares many enzymatic and structural properties with myosin. The mechanochemical potential of purified avian 110K-CM was assessed using the Nitella bead motility assay (Sheetz, M. P., and J. A. Spudich. 1983. Nature (Lond.). 303:31-35). Under low Ca2+ conditions, 110K-CM-coated beads bound to actin cables, but no movement was observed. Using EGTA/calcium buffers (approximately 5-10 microM free Ca2+) movement of 110K-CM-coated beads along actin cables (average rate of approximately 8 nm/s) was observed. The movement was in the same direction as that for beads coated with skeletal muscle myosin. The motile preparations of 110K-CM were shown to be free of detectable contamination by conventional brush border myosin. Based on these and other observations demonstrating the myosin-like properties of 110K-CM, we propose that this complex be named "brush border myosin I."  相似文献   

10.
The actin filament-severing domain of plasma gelsolin   总被引:20,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

11.
Monoclonal antibodies directed against seven different sites on Dictyostelium myosin (Peltz, G., J. A. Spudich, and P. Parham, 1985, J. Cell Biol., 100: 1016-1023) were tested for their ability to inhibit movement of myosin in vitro, using the Nitella-based myosin-mediated bead movement assay (Sheetz, M. P., R. Chasan, and J. A. Spudich, 1984, J. Cell Biol., 99: 1867-1871). To complement this functional assay, we located the binding sites of these antibodies by electron microscopy, using the rotary shadowing technique. One antibody bound to the 18,000-dalton light chain and inhibited movement completely. All of the remaining antibodies bound to various positions along the rod portion of the myosin molecule, which is approximately 1,800 A long. Antibodies that bound to the rod about 470, 680, and 1400 A from the head-tail junction did not alter myosin movement. One antibody appeared to bind very close to the head-tail junction and to inhibit movement 50%. Surprisingly, three antibodies that bound about 1,200 A from the head-tail junction inhibited movement completely. This inhibition did not depend on using intact IgG, since Fab' fragments had the same effect.  相似文献   

12.
A unique high molecular weight protein (240,000 mol wt) has been purified from isolated desmosomes of bovine muzzle epidermis, using low-salt extraction at pH 9.5-10.5 and gel-filtration followed by calmodulin-affinity column chromatography. This protein was shown to bind to calmodulin in a Ca2+-dependent manner, so we called it desmocalmin here. Desmocalmin also bound to the reconstituted keratin filaments in vitro in the presence of Mg2+, but not to actin filaments. By use of the antibody raised against the purified desmocalmin, desmocalmin was shown by both immunoelectron and immunofluorescence microscopy to be localized at the desmosomal plaque just beneath the plasma membrane. Judging from its isoelectric point and antigenicity, desmocalmin was clearly distinct from desmoplakins I and II, which were identified in the desmosomal plaque by Mueller and Franke (1983, J. Mol. Biol., 163:647-671). In the low-angle, rotary-shadowing electron microscope, the desmocalmin molecules looked like flexible rods approximately 100-nm long consisting of two polypeptide chains lying side by side. The similar rodlike structures were clearly identified in the freeze-etch replica images of desmosomes. Taken together, these findings indicate that desmocalmin could function as a key protein responsible for the formation of desmosomes in a calmodulin-dependent manner (Trinkaus-Randall, V., and I.K. Gipson, 1984, J. Cell Biol., 98:1565-1571).  相似文献   

13.
Fragmin from plasmodium of Physarum polycephalum binds G-actin and severs F-actin in the presence of Ca2+ over 10(-6) M. The fragmin-actin complex consisting of fragmin and G-actin nucleates actin polymerization and caps the barbed (fast growing) end of F-actin, regardless of the concentrations of Ca2+, and the actin filaments are shortened. Actin kinase purified from plasmodium abolishes the nucleation and capping activities of the complex by phosphorylating actin of the fragmin-actin complex (Furuhashi, K., and Hatano, S. (1990) J. Cell. Biol. 111, 1081-1087). This inactivation of the complex leads to production of long actin filaments. We obtained evidence that Physarum actin is phosphorylated by actin kinase at Thr-201, and probably at Thr-202 and/or Thr-203, with 1 mol of phosphate distributed among them. This finding raises the possibility that the site of phosphorylation, Thr-201 to Thr-203, is positioned on the pointed (slow growing) end domain of the actin molecule, because growth of actin filaments from the fragmin-actin complex occurs only from the pointed end. These observations are consistent with a model of the three-dimensional structure of G-actin. Inactivation of the fragmen-actin complex may follow phosphorylation of the pointed end domain of actin.  相似文献   

14.
Short and long myosin light chain kinases (MLCKs) are Ca(2+)/calmodulin-dependent enzymes that phosphorylate the regulatory light chain of myosin II in thick filaments but bind with high affinity to actin thin filaments. Three repeats of a motif made up of the sequence DFRXXL at the N terminus of short MLCK are necessary for actin binding (Smith, L., Su, X., Lin, P., Zhi, G., and Stull, J. T. (1999) J. Biol. Chem. 274, 29433-29438). The long MLCK has two additional DFRXXL motifs and six Ig-like modules in an N-terminal extension, which may confer unique binding properties for cellular localization. Two peptides containing either five or three DFRXXL motifs bound to F-actin and smooth muscle myofilaments with maximal binding stoichiometries consistent with each motif binding to an actin monomer in the filaments. Both peptides cross-linked F-actin and bound to stress fibers in cells. Long MLCK with an internal deletion of the five DFRXXL motifs and the unique NH(2)-terminal fragment containing six Ig-like motifs showed weak binding. Cell fractionation and extractions with MgCl(2) indicate that the long MLCK has a greater affinity for actin-containing filaments than short MLCK in vitro and in vivo. Whereas DFRXXL motifs are necessary and sufficient for short MLCK binding to actin-containing filaments, the DFRXXL motifs and the N-terminal extension of long MLCK confer high affinity binding to stress fibers in cells.  相似文献   

15.
Several conflicting reports have been made regarding the affinity of myosin heads (subfragment 1 and heavy meromyosin (HMM) for regulated actin (actin complexed with tropomyosin and troponin) at low ionic strength (mu = 18-50 mM) and whether or not this interaction is Ca2+ sensitive (Chalovich, J. M., and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437; Chalovich, J. M., and Eisenberg, E. (1984) Biophys. J. 45, 221a; Wagner, P. D., and Stone, D. B. (1983) Biochemistry 22, 1334-1342; and Wagner, P. D. (1984) Biochemistry 23, 5950-5956). Since the low ionic strengths used in the above studies do not represent the physiological ionic strength under which intact muscle exhibits Ca2+-dependent tension development, we investigated the possibility of whether a Ca2+-dependent regulated actin-HMM interaction could be observed at physiological ionic strength (mu = 134 mM, pH 7.4) and in the presence of ATP (at 23-24 degrees C). Direct binding of HMM to varied concentrations of regulated actin (87.7-221 microM free actin) was measured by sedimentation in an air-driven ultracentrifuge. Under the above conditions, we found that the regulated actin activation of HMM-Mg2+-ATPase was about 94% inhibited in the absence of Ca2+ although the association constant (Ka) is only moderately affected in the presence of Ca2+. These results are similar to those obtained by Chalovich and Eisenberg (1982 and 1984) with subfragment 1 and HMM, respectively, at low ionic strength and support their suggestion that in solution tropomyosin-troponin may not act totally by physically blocking the formation of cross-bridges with actin, but instead may act to inhibit a kinetic step in the overall ATPase rate. Whether this holds true in more intact systems (e.g. myosin, thick filaments) remains to be determined. Our results also show a good correlation between levels of ATPase activation and HMM binding by unregulated actin and in regulated actin in the presence of Ca2+.  相似文献   

16.
Acanthamoebe profilin has a native molecular weight of 11,700 as measured by sedimentation equilibrium ultracentrifugation and an extinction coefficient at 280 nm of 1.4 X 10(4) M-1cm-1. Rabbit antibodies against Acanthamoeba profilin react only with the 11,700 Mr polypeptide among all other ameba polypeptides separated by electrophoresis. These antibodies react with a 11,700 Mr polypeptide in Physarum but not with any proteins of Dictyostelium or Naeglaria. Antibody-binding assays indicate that approximately 2% of the ameba protein is profilin and that the concentration of profilin is approximately 100 mumol/liter cells. During ion exchange chromatography of soluble extracts of Acanthamoeba on DEAE-cellulose, the immunoreactive profilin splits into two fractions: an unbound fraction previously identified by Reichstein and Korn (1979, J. Biol. Chem., 254:6174-6179) and a tightly bound fraction. Purified profilin from the two fractions is identical by all criteria tested. The tightly bound fraction is likely to be attached indirectly to the DEAE, perhaps by association with actin. By fluorescent antibody staining, profilin is distributed uniformly throughout the cytoplasmic matrix of Acanthamoeba. In 50 mM KCl, high concentrations of Acanthamoeba profilin inhibit the elongation rate of muscle actin filaments measured directly by electron microscopy, but the effect is minimal in KCl with 2 MgCl2. By using the fluorescence change of pyrene-labeled Acanthamoeba actin to assay for polymerization, we confirmed our earlier observation (Tseng, P. C.-H., and T. D. Pollard, 1982, J. Cell Biol. 94:213-218) that Acanthamoeba profilin inhibits nucleation much more strongly than elongation under physiological conditions.  相似文献   

17.
The binding of cations to ATP-G-actin has been assessed by measuring the kinetics of the increase in fluorescence of N-acetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine-labeled actin. Ca2+ and Mg2+ compete for a single high-affinity site on ATP-G-actin with KD values of 1.5-15 nM for Ca2+ and 0.1-1 microM for Mg2+, i.e. with affinities 3-4 orders of magnitude higher than previously reported (Frieden, C., Lieberman, D., and Gilbert, H. R. (1980) J. Biol. Chem. 255, 8991-8993). As proposed by Frieden (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886), the Mg-actin complex undergoes a slow isomerization (Kis = 0.03-0.1) to a higher affinity state (K'D = 4-40 nM). The replacement of Ca2+ by Mg2+ at this high-affinity site causes a slow 10% increase in fluorescence that is 90% complete in about 200 s at saturating concentrations of Mg2+. Independently, Ca2+, Mg2+, and K+ bind to low-affinity sites (KD values of 0.15 mM for Ca2+ and Mg2+ and 10 mM for K+) which causes a rapid 6-8% increase in fluorescence (complete in less than 5 s). We propose that the activation step that converts Ca-G-actin to a polymerizable species upon addition of Mg2+ is the binding of Mg2+ to the low-affinity sites and not the replacement of Ca2+ by Mg2+ at the high-affinity site.  相似文献   

18.
Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.  相似文献   

19.
The mechanism of contraction in motile models of teleost retinal cones has been examined by using N-ethylmaleimide (NEM)-modified myosin fragments (NEM-S-1 and NEM-heavy meromyosin [HMM]) to prevent access of native myosin to actin filaments during reactivation of contraction. In the diurnal light/dark cycle, retinal cones of green sunfish (Lepomis cyanellus) and bluegill (lepomis macrochirus) exhibit length changes of more than 90 mum. The motile myoid region of the cone contracts from 100 mum in the dark to 6 mum in the light. Motile models for cone contraction have been obtained by lysis of dark-adapted retinas with the non-ionic detergent, Brij-58. These cone motile models undergo Ca(++)-and ATP-dependent reactivated contraction, with morphology and rate comparable to those observed in vivo (Burnside, B.,B. Smith, M. Nagata, and K. Porrello, 1982, J. Cell Biol., 92:198-206). The cone myoids contain longitudinally oriented actin filaments which bind myosin subfragment-1 (S-1) to form characteristic “arrowhead” complexes which dissociate in the presence of MgATP (Burnside, B., 1978, J. Cell Biol., 78:227-246). Modification of S-1 or HMM with the sulfhydryl reagent, NEM, produces new species, NEM-S-1 or NEM-HMM, which still bind actin but which fail to detach in the presence of MgATP (Meeusen, R.L., and W.Z. Cande, 1979, J. Cell Biol., 82:57-65). We have used NEM-S-1 and NEM-HMM to test whether cone contraction depends on an actomyosin force- generating system. We find that reactivated contraction of cone models is inhibited by NEM-S-1 and NEM-HMM but not by the unmodified species, S-1 and HMM. Thus, reactivated cone contraction exhibits NEM-S-1 and NEM-HMM sensitivity as well as Ca(++)- and ATP- dependence. These observations are consistent with and actimyosin-mediated mechanism for force production during cone contraction.  相似文献   

20.
Crystal structures of the myosin motor domain in the presence of different nucleotides show the lever arm domain in two basic angular states, postulated to represent prestroke and poststroke states, respectively (Rayment, I. (1996) J. Biol. Chem. 271, 15850-15853; Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C. (1998) Cell 94, 559-571). Contact is maintained between two domains, the relay and the converter, in both of these angular states. Therefore it has been proposed by Dominguez et al. (cited above) that this contact is critical for mechanically driving the angular change of the lever arm domain. However, structural information is lacking on whether this contact is maintained throughout the actin-activated myosin ATPase cycle. To test the functional importance of this interdomain contact, we introduced cysteines into the sequence of a "cysteine-light" myosin motor at position 499 on the lower cleft and position 738 on the converter domain (Shih, W. M., Gryczynski, Z., Lakowicz, J. L., and Spudich, J. A. (2000) Cell 102, 683-694). Disulfide cross-linking could be induced. The cross-link had minimal effects on actin binding, ATP-induced actin release, and actin-activated ATPase. These results demonstrate that the relay/converter interface remains intact in the actin strongly bound state of myosin and throughout the entire actin-activated myosin ATPase cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号