首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oceanic islands in the Southern Ocean can be considered amongst the remotest shores as, not only are they uninhabited (except for small research stations) and geographically isolated, but they are also enclosed by the oceanographic barrier of the Polar Frontal Zone. We survey island shores in the Scotia Arc mountain chain linking Antarctica to South America, including South Georgia, the South Sandwich archipelago and Adelaide Island off the west coast of the Antarctic Peninsula, and compare our findings to literature reports from two other Scotia Arc island groups (South Orkney and South Shetland archipelagos). The presence of marine pollution (in the form of beached debris) in this region is significant, both as a measure of man's influence on this isolated environment, and due to direct dangers posed to the fauna. This paper reports the results of surveys of beached marine debris at various times in the last decade for each island group. The majority (>70%) of the items recovered were anthropogenic in origin and most of these were synthetic (plastic or polystyrene). Debris densities varied from zero to 0.3 items m-1 but were typically lower than those reported from other regions of the globe. At some localities (South Georgia), marine-debris data showed a close relationship with local fishery activity, whilst at others (South Sandwich Islands) debris appeared to have a more distant origin. Unlike oceanic debris in warm (non-polar) water localities, there was no evidence of any colonisation by biota. Debris accumulation may provide a useful indirect measure of local fishery activity and compliance with CCAMLR regulations, as well as monitoring the state of the oceans and island shores.  相似文献   

2.
The Scotia Arc is the only shallow-water and island bridge linking nowadays Patagonia and the Antarctic. The Antarctic Circumpolar Current as an oceanographic peculiarity makes this region an interesting biogeographic transition zone, because this frontal system traditionally is said to isolate the Antarctic fauna from that of the adjacent northern ecosystems. Based on benthos samples from three expeditions onboard R/V Polarstern, we studied distribution patterns of 200 polychaete species and 34 major benthic taxa in order to evaluate the role of polychaetes in the benthic realm of this part of the Southern Ocean. ANOSIM test distinguished three station groups: the central eastern Scotia Sea, the continental shelf off South America and stations at the tip of the Antarctic Peninsula. These station groups differed in organism densities and diversities with stations at the tip of the Antarctic Peninsula hosting the most diverse and dense community. The polychaete diversity patterns in the three assemblages evidenced closer connectivity between the tip of the Antarctic Peninsula and the central eastern Scotia Sea than between the continental shelf off South America with either the stations off the tip of the Peninsula or the central eastern Scotia Sea. This is probably supported by the Polar Front, which divides the island chain into two branches. Species distribution and community patterns of polychaetes appear to be associated with oceanographic and sediment conditions in this region. Most of the shared species showed the capability to tolerate differences in hydrostatic pressure. We suggest that the islands of the Scotia Sea may constitute a bridge for exchange of benthic species, particularly for polychaetes with eurybathic distribution and high dispersal capabilities.  相似文献   

3.
Summary The biogeography of Antarctic demosponges has been studied by dividing Antarctic and circumantarctic areas into geographic entities, and then assigning to these entities all recorded species according to literature reports. Correspondence analysis ordination based on the presence or absence of species shows the existence of a distinct Antarctic Faunistic Complex (AFC), including continental Antarctica, most of the Antarctic and circumantarctic islands and the Magellan area. Such a result has enabled us to drawup a checklist of 352 Antarctic demosponge species. Investigation of within-AFC patterns indicates that the continent is a highly homogeneous area, establishing closer relationships with the Scotia Arc and to a lesser extent with the Magellan region. The AFC has low specific affinities with the other circumantarctic regions (South Africa, temperate Australia and New Zealand), whereas at the generic level relationships appear more pronounced. This biogeographic pattern may lead us to suppose a common Gondwanian origin for Antarctic and circumantarctic sponge faunas, followed by differentiation due to Gondwana fragmentation. Antarctica moved towards polar latitudes and became progressively isolated, only maintaining active interchanges with South America. Climatic changes possibly induced intense processes of speciation in the Antarctic demosponge fauna, thus contributing to its differentiation.  相似文献   

4.
The distribution of six endemic Antarctic nudibranch speciesis described, using both published data and new results fromrecent expeditions to the Atlantic sector of the South PolarSea. Notaeolidia schmekelae Wägele, 1990 is restrictedto the Weddell Sea, and N. gigas Eliot, 1905 to the AntarcticPeninsula and the Scotia Arc. N. depressa Eliot, 1905 is theonly member of the family Notaeolidiidae Odhner, 1926 with acircumpolar distribution. Localities of Pseudotritonia quadrangularisThiele, 1912 and Telarma antarctica Odhner, 1934, are knownaround the Antarctic Continent, whereas Pseudotritonia gracilidensOdhner, 1944 was only collected at the Antarctic Peninsula.The biogeographical divisions, discussed by several authors,do not coincide in all aspects with the distribution patternsof the Nudibranchia. According to my results, the AntarcticPeninsula forms a separate faunal zone, with transitional elementsof the High Antarctic and Subantarctic zone. South Georgia hasno endemic nudibranchs. (Received 30 March 1990; accepted 23 September 1990)  相似文献   

5.
Quaternary glaciations in Antarctica drastically modified geographical ranges and population sizes of marine benthic invertebrates and thus affected the amount and distribution of intraspecific genetic variation. Here, we present new genetic information in the Antarctic limpet Nacella concinna, a dominant Antarctic benthic species along shallow ice‐free rocky ecosystems. We examined the patterns of genetic diversity and structure in this broadcast spawner along maritime Antarctica and from the peri‐Antarctic island of South Georgia. Genetic analyses showed that N. concinna represents a single panmictic unit in maritime Antarctic. Low levels of genetic diversity characterized this population; its median‐joining haplotype network revealed a typical star‐like topology with a short genealogy and a dominant haplotype broadly distributed. As previously reported with nuclear markers, we detected significant genetic differentiation between South Georgia Island and maritime Antarctica populations. Higher levels of genetic diversity, a more expanded genealogy and the presence of more private haplotypes support the hypothesis of glacial persistence in this peri‐Antarctic island. Bayesian Skyline plot and mismatch distribution analyses recognized an older demographic history in South Georgia. Approximate Bayesian computations did not support the persistence of N. concinna along maritime Antarctica during the last glacial period, but indicated the resilience of the species in peri‐Antarctic refugia (South Georgia Island). We proposed a model of Quaternary Biogeography for Antarctic marine benthic invertebrates with shallow and narrow bathymetric ranges including (i) extinction of maritime Antarctic populations during glacial periods; (ii) persistence of populations in peri‐Antarctic refugia; and (iii) recolonization of maritime Antarctica following the deglaciation process.  相似文献   

6.
Leucistic Antarctic fur seals at Bouvetøya   总被引:4,自引:4,他引:0  
One leucistic and one partially leucistic Antarctic fur seal Arctocephalus gazella were seen at Bouvetøya during the 1996/97 austral summer. Both likely came from South Georgia, where this colour morph is common. No individuals of this colour morph were sighted during three subsequent expeditions to Bouvetøya. The prevalence of this colour morph in the abundant populations of the Scotia Arc may be due to founder effect, as at least one leucistic animal was present at South Georgia when the Antarctic fur seal was close to extinction.  相似文献   

7.
Benthic communities in several fjords and sheltered bays of the north coast of South Georgia Island were examined using SCUBA and shore sampling in November 2004. It is one of the most northerly islands within the Polar Front and its well studied, terrestrial biota is described as sub Antarctic. The intertidal and subtidal zones and their fauna are, by comparison, little known. We describe the composition of the substratum and benthic communities of sites in several northern bays, including an exceptional community in the extremely sheltered Moraine Fjord with a 2 m sill at its entrance. In this, like those in some other fjordic systems, some taxa occur shallower than elsewhere, and in this instance, get large and are probably old. Elsewhere, we found the coastal fauna was fairly similar to Antarctic shallow communities in the southern Scotia Arc and Peninsula region. Of the taxa we found, we identified 53 to genus and 41 to species. Most of these were typical Antarctic shallow benthic taxa. Certain flatworms, nemerteans, bivalve and gastropod molluscs, amphipod and isopod crustaceans, asteroid echinoderms and stalked ascidians were very abundant, but some normally common Antarctic higher taxa and species were notably absent or rare.  相似文献   

8.
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ~43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.  相似文献   

9.
The Antarctic shelf fauna is isolated from other continental shelf faunas both physically by distance, and oceanographically by the Antarctic circumpolar current (ACC). To elucidate the relative importance of these two isolating mechanisms, we used the seastar fauna of the south-Atlantic sub-Antarctic islands to address the hypothesis that the ACC is dominant in controlling the distribution pattern of Antarctic fauna. We expected that seastar faunas from islands on the high latitude side of the ACC would show more similarities to each other than to faunas from islands on the low latitude side. The alternative isolation by distance model predicted that the island furthest from others would have the most unique fauna. For shelf-depth (<500 m) Asteroidea of the Scotia Arc region, assemblages were more similar between islands on each side of the ACC barrier than islands that were closer together, and this pattern was caused by differences in abundance of a few ubiquitous species.  相似文献   

10.
Diversity and biogeography of the Antarctic flora   总被引:1,自引:0,他引:1  
Aim To establish how well the terrestrial flora of the Antarctic has been sampled, how well the flora is known, and to determine the major patterns in diversity and biogeography. Location Antarctica south of 60° S, together with the South Sandwich Islands, but excluding South Georgia, Bouvetøya and the periantarctic islands. Methods Plant occurrence data were collated from herbarium specimens and literature records, and assembled into the Antarctic Plant Database. Distributional patterns were analysed using a geographic information system. Biogeographical patterns were determined with a variety of multivariate statistics. Results Plants have been recorded from throughout the Antarctic, including all latitudes between 60° S and 86° S. Species richness declines with latitude along the Antarctic Peninsula, but there was no evidence for a similar cline in Victoria Land and the Transantarctic mountains. Multi‐dimensional scaling ordinations showed that the species compositions of the South Orkney, South Shetland Islands and the north‐western Antarctic Peninsula are very similar to each other, as are the floras of different regions in continental Antarctica. They also suggest, however, that the eastern Antarctic Peninsula flora is more similar to the flora of the southern Antarctic Peninsula than to the continental flora (with which it has traditionally been linked). The South Sandwich Islands have a flora that is very dissimilar to that in all Antarctic regions, probably because of their isolation and volcanic nature. Main conclusions The Antarctic flora has been reasonably well sampled, but certain areas require further floristic surveys. Available data do, however, allow for a number of robust conclusions. A diversity gradient exists along the Antarctic Peninsula, with fewer species (but not fewer higher taxa) at higher latitudes. Multi‐dimensional scaling ordination suggests three major floral provinces within Antarctica: northern maritime, southern maritime, and continental. Patterns of endemism suggest that a proportion of the lichen flora may have an ancient vicariant distribution, while most bryophytes are more recent colonists.  相似文献   

11.
Samples taken at two stations in the northern and southern parts of the Scotia Arc, at depths of 277 and 307 m, respectively, were analysed for metazoan meiofauna with special attention to the nematodes. Identification to species level was performed for two closely related subdominant nematode genera (Desmodora and Desmodorella) in samples from the two Scotia Arc stations and in other available samples from adjacent areas (Magellan Region, Drake Passage, Weddell Sea). Seven Desmodora species and three Desmodorella species were found, of which, respectively five and two species are new to science. The Scotia Arc stations show relatively high densities and average diversity on meiofauna and nematode level compared to adjacent areas. The distribution patterns of the various Desmodora and Desmodorella species suggest the Scotia Arc as a shallow bridge and a possible exchange route for meiofauna between the Antarctic and South America, especially since these species seem to be constrained by water depth.  相似文献   

12.
Antarctic terrestrial ecosystems currently include very few non-native species, due to the continent’s extreme isolation from other landmasses. However, the indigenous biota is vulnerable to human-mediated introductions of non-native species. In December 2005, four construction vehicles were imported by contractors to the British Antarctic Survey’s (BAS) Rothera Research Station (Antarctic Peninsula) from the Falkland Islands and South Georgia (South Atlantic) on board RRS James Clark Ross. The vehicles were contaminated with >132 kg of non-Antarctic soil that contained viable non-native angiosperms, bryophytes, micro-invertebrates, nematodes, fungi, bacteria, and c. 40,000 seeds and numerous moss propagules. The incident was a significant contravention of BAS operating procedures, the UK Antarctic Act (1994) and the Protocol on Environmental Protection to the Antarctic Treaty (1998), which all prohibit the introduction of non-native species to Antarctica without an appropriate permit. The introduction of this diverse range of species poses a significant threat to local biodiversity should any of the species become established, particularly as the biota of sub-Antarctic South Georgia is likely to include many species with appropriate pre-adaptations facilitating the colonisation of more extreme Antarctic environments. Once the incident was discovered, the imported soil was removed immediately from Antarctica and destroyed. Vehicle cleaning and transportation guidelines have been revised to enhance the biosecurity of BAS operations, and to minimise the risk of similar incidents occurring.  相似文献   

13.
King George Island (KGI), which is located between the Antarctic and South American continents, may play a crucial role in the exchange of Bryozoa amongst the various Antarctic sectors and across the Polar Front. Knowledge regarding the biological diversity of this area could help us understand the evolution of the Antarctic ecosystem and its connectivity to the South American continent as well as the colonization ability of particular species. Here, we investigate the patterns of diversity and biogeographic affiliation of the cheilostome Bryozoa from KGI and the surrounding areas. Of 114 identified taxa from a depth range of 6–492 m, 26 species were reported for the first time in KGI. The most speciose genera were Camptoplites, Osthimosia, Smittina, and Cellarinella. Species richness at KGI consisted of 70% of the total bryozoans at the South Shetland Islands (SSI). Fifty-nine per cent of the bryozoans from KGI are endemic to Antarctica, which closely reflects the previously estimated endemism rate for bryozoans and other Antarctic taxa. Cluster analysis indicated that the strongest faunal links of SSI bryozoans were with Antarctic Peninsula assemblages, corresponding to the physical distance between both locations. The biogeographic similarities between SSI and South America confirm the broad trend of existing Antarctic–South American faunal links previously observed in bryozoans and many other taxa and indicate that SSI might be an important transitional zone between Antarctica and South America.  相似文献   

14.
A genus and species of Antarctic benthic hydroids new to science, Mixoscyphus antarcticus gen. nov., sp. nov., is described and figured. Its systematic position amongst allied genera of the family Sertulariidae is discussed. The studied material originates from the South Shetland Islands area (West Antarctica), which was collected by several Spanish and US Antarctic expeditions. Mixoscyphus gen. nov. currently represents the only complete endemic genus of Antarctic benthic hydrozoans. A discussion of other genera of benthic hydroids that are largely endemic to the Antarctic is also provided.  相似文献   

15.
Understanding regional‐scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid‐trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.  相似文献   

16.
Determining whether comparable processes drive genetic divergence among marine species is relevant to molecular ecologists and managers alike. Sympatric species with similar life histories might be expected to show comparable patterns of genetic differentiation and a consistent influence of environmental factors in shaping divergence. We used microsatellite loci to quantify genetic differentiation across the Scotia Arc in three species of closely related benthic octopods, Pareledone turqueti, P. charcoti, and Adelieledone polymorpha. The relative importance of environmental factors (latitude, longitude, depth, and temperature) in shaping genetic structure was investigated when significant spatial genetic structure was uncovered. Isolated populations of P. turqueti and A. polymorpha at these species’ range margins were genetically different to samples close to mainland Antarctica; however, these species showed different genetic structures at a regional scale. Samples of P. turqueti from the Antarctic Peninsula, Elephant Island, and Signy Island were genetically different, and this divergence was associated primarily with sample collection depth. By contrast, weak or nonsignificant spatial genetic structure was evident across the Antarctic Peninsula, Elephant Island, and Signy Island region for A. polymorpha, and slight associations between population divergence and temperature or depth (and/or longitude) were detected. Pareledone charcoti has a limited geographic range, but exhibited no genetic differentiation between samples from a small region of the Scotia Arc (Elephant Island and the Antarctic Peninsula). Thus, closely related species with similar life history strategies can display contrasting patterns of genetic differentiation depending on spatial scale; moreover, depth may drive genetic divergence in Southern Ocean benthos.  相似文献   

17.
Despite being one of the most intensely studied habitat types worldwide, the intertidal region around Antarctica has received little more than superficial study. Despite this, the first detailed study of a single locality on the Antarctic Peninsula reported previously unanticipated levels of species richness, biomass and diversity in cryptic intertidal habitats. The current study extends the coverage achieved from this single locality. The intertidal zone at sites in the Scotia Arc, the Falkland Islands and the Antarctic Peninsula was investigated. At all the study sites selected, a wide range of macrofauna was found inhabiting the littoral fringe. These communities, although generally cryptic and occupying predominantly the undersides of boulders and protected interstices, at some locations and sites were rich at multiple taxonomic levels. Across the study locations species richness in the intertidal zone ranged from 7 to 30 species. The highest species richness and diversity were found at high latitude localities, which experienced the highest physical disturbance due to ice scour, and appeared superficially to be denuded of life. Species assemblages varied with latitude with Adelaide Island having a high proportion of bryozoans relative to all other localities.  相似文献   

18.
Evolution and Diversification of Antarctic Notothenioid Fishes   总被引:3,自引:0,他引:3  
Antarctica supported fossil ichthyofaunas during the Devonian,Jurassic, Cretaceous and Eocene/Oligocene. These faunas arenot ancestral to each other, nor are they related to any componentof the modern fauna. About one hundred species of notothenioidsdominate a modern fauna of over 200 species of bottom fishes.This highly endemic perciform suborder is not representedinthe fossil record of Antarctica. Notothenioids may have evolvedin situ on the margins of the Antarctic continent while graduallyadapting to cooling conditions during the Tertiary. Cladisticstudies indicate that notothenioids are a monophyletic group,but a sister group has not been identified among perciform fishes.With relatively few non-notothenioid fishes in Antarctic waters,notothenioids fill ecological roles normally occupied by taxonomicallydiverse fishes in temperate waters. There are six notothenioidfamilies: Bovichtidae, Nototheniidae, Harpagiferidae, Artedidraconidae,Bathydraconidae and Channichthyidae. Aspects of theirbiologyare briefly considered with emphasis on the Nototheniidae, themost speciose family. Evolutionary diversification within thisfamily allows recognition of species which are pelagic, cryopelagic,benthopelagic and benthic.  相似文献   

19.
The first extensive and stratigraphically detailed taxonomic study of the Middle to Late Eocene Bryozoa of the St Vincent Basin has identified more than 200 species of Cheilostomata and 50 species of Cyclostomata. There are three biogeographic groups: basin endemic, Australian and global. Two-thirds (116) of the cheilostome species and seven genera are currently considered endemic to this basin. Most species are endemic to Australia and similar to those found in the Oligo-Miocene of Victoria. The Cellariidae are a common component of most Australian Cainozoic deposits, but the species are highly dissimilar, with 13 of the 17 species here being new. The global component indicates that biogeographic links with regions outside Australia still existed in the Eocene. The cyclostome genus Reticrescis is only known from the Australian and Antarctic Eocene. Ten genera have their first occurrence in the Eocene St Vincent Basin. The Phidoloporidae and Smittinidae represent the most diverse and ubiquitous groups at a geological time close to their time of origination. Contemporaneous sediments in Antarctica, eastern Europe and North America also have a diverse fauna of this family, pointing to a strong Tethyan link. Rhamphosmittina lateralis (MacGillivray) is still extant in New Zealand, having an exceptionally long time range of 40 million years. Overall, the fauna has a distinct Late Cretaceous character. A new genus of Onychocellidae appears similar to genera that were common in Cretaceous Tethyan faunas but rare during the Cainozoic. This similarity ends in the Oligocene, after which the Australian bryozoan became endemic  相似文献   

20.
The Scotia Sea ecosystem is a major component of the circumpolar Southern Ocean system, where productivity and predator demand for prey are high. The eastward-flowing Antarctic Circumpolar Current (ACC) and waters from the Weddell-Scotia Confluence dominate the physics of the Scotia Sea, leading to a strong advective flow, intense eddy activity and mixing. There is also strong seasonality, manifest by the changing irradiance and sea ice cover, which leads to shorter summers in the south. Summer phytoplankton blooms, which at times can cover an area of more than 0.5 million km2, probably result from the mixing of micronutrients into surface waters through the flow of the ACC over the Scotia Arc. This production is consumed by a range of species including Antarctic krill, which are the major prey item of large seabird and marine mammal populations. The flow of the ACC is steered north by the Scotia Arc, pushing polar water to lower latitudes, carrying with it krill during spring and summer, which subsidize food webs around South Georgia and the northern Scotia Arc. There is also marked interannual variability in winter sea ice distribution and sea surface temperatures that is linked to southern hemisphere-scale climate processes such as the El Ni?o-Southern Oscillation. This variation affects regional primary and secondary production and influences biogeochemical cycles. It also affects krill population dynamics and dispersal, which in turn impacts higher trophic level predator foraging, breeding performance and population dynamics. The ecosystem has also been highly perturbed as a result of harvesting over the last two centuries and significant ecological changes have also occurred in response to rapid regional warming during the second half of the twentieth century. This combination of historical perturbation and rapid regional change highlights that the Scotia Sea ecosystem is likely to show significant change over the next two to three decades, which may result in major ecological shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号