首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial periplasmic binding protein-dependent transport systems require the function of a specific substrate-binding protein, located in the periplasm, and several membrane-bound components. We present evidence for a nucleotide-binding site on one of the membrane components from each of three independent transport systems, the hisP, malK and oppD proteins of the histidine, maltose and oligopeptide permeases, respectively. The amino acid sequence of the oppD protein has been determined and this protein is shown to share extensive homology with the hisP and malK proteins. Three lines of evidence lead us to propose the existence of a nucleotide-binding site on each of these proteins. A consensus nucleotide-binding sequence can be identified in the same relative position in each of the three proteins. The oppD protein binds to a Cibacron Blue affinity column and can be eluted by ATP but not by CTP or NADH. The oppD protein is labelled specifically by the nucleotide affinity analogue 5'-p-fluorosulphonylbenzoyladenosine. The identification of a nucleotide-binding site provides strong evidence that transport by periplasmic binding protein-dependent systems is energized directly by the hydrolysis of ATP or a closely related nucleotide. The hisP, malK and oppD proteins are thus responsible for energy-coupling to their respective transport systems.  相似文献   

2.
Periplasmic permeases consist of a substrate-binding receptor, located in the periplasm, and a membrane-bound complex composed of two integral membrane proteins and two nucleotide-binding proteins. The receptor interacts with the membrane-bound complex, which, upon receiving this signal, is postulated to hydrolyze ATP and translocate the substrate. We show that a class of mutations in the membrane-bound complex of the histidine permease, which allow transport in the absence of the substrate-binding protein, hydrolyze ATP independently from any signal. The data are compatible with the notion that cross-membrane signaling between the liganded periplasmic receptor and the cytoplasmic ATP-binding sites initiates conformational changes leading to ATP hydrolysis and substrate translocation.  相似文献   

3.
Bacterial periplasmic transport systems are complex permeases composed of a soluble substrate-binding receptor and a membrane-bound complex containing 2-4 proteins. Recent developments have clearly demonstrated that these permeases are energized by the hydrolysis of ATP. Several in vitro systems have allowed a detailed study of the essential parameters functioning in these permeases. Several of the component proteins have been shown to interact with each other and the actual substrate for the transport process has been shown to be the liganded soluble receptor. The affinity of this substrate for the membrane complex is approximately 10 microM. The involvement of ATP in energy coupling is mediated by one of the proteins in the membrane complex. For each specific permease, this protein is a member of a family of conserved proteins which bind ATP. The similarity between the members of this family is high and extends itself beyond the consensus motifs for ATP binding. Interestingly, over the last few years, several eukaryotic membrane-bound proteins have been discovered which bear a high level of homology to the family of the conserved components of bacterial periplasmic permeases. Most of these proteins are known to, or can be inferred to participate in a transport process, such as in the case of the multidrug resistance protein (MDR), the STE6 gene product of yeast, and possibly the cystic fibrosis protein. This homology suggests a similarity in the mechanism of action and possibly a common evolutionary origin. This exciting development will stimulate progress in both the prokaryotic and eukaryotic areas of research by the use of overlapping procedures and model building. We propose that this universal class of permeases be called 'Traffic ATPases' to distinguish them from other types of transport systems, and to highlight their involvement in the transport of a vast variety of substrates in either direction relative to the cell interior and their use of ATP as energy source.  相似文献   

4.
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough toward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters.  相似文献   

5.
The membrane-bound complex of the prokaryotic histidine permease, a periplasmic protein-dependent ABC transporter, is composed of two hydrophobic subunits, HisQ and HisM, and two identical ATP-binding subunits, HisP, and is energized by ATP hydrolysis. The soluble periplasmic binding protein, HisJ, creates a signal that induces ATP hydrolysis by HisP. The crystal structure of HisP has been resolved and shown to have an "L" shape, with one of its arms (arm I) being involved in ATP binding and the other one (arm II) being proposed to interact with the hydrophobic subunits (Hung, L.-W., Wang, I. X., Nikaido, K., Liu, P.-Q., Ames, G. F.-L., and Kim, S.-H. (1998) Nature 396, 703-707). Here we study the basis for the defect of several HisP mutants that have an altered signaling pathway and hydrolyze ATP constitutively. We use biochemical approaches to show that they produce a loosely assembled membrane complex, in which the mutant HisP subunits are disengaged from HisQ and HisM, suggesting that the residues involved are important in the interaction between HisP and the hydrophobic subunits. In addition, the mutant HisPs are shown to have lower affinity for ADP and to display no cooperativity for ATP. All of the residues affected in these HisP mutants are located in arm II of the crystal structure of HisP, thus supporting the proposed function of arm II of HisP as interacting with HisQ and HisM. A revised model involving a cycle of disengagement and reengagement of HisP is proposed as a general mechanism of action for ABC transporters.  相似文献   

6.
Periplasmic permeases are composed of four proteins, one of which has an ATP-binding site that has been postulated to be involved in energy coupling. Previous data suggested that these permeases derive energy from substrate level phosphorylation (Berger, E. A. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 1514-1518); however, conflicting results later cast doubt upon this hypothesis. Here, we make use of two well characterized periplasmic permeases and of a well characterized unc mutant (ATPase-) to examine this energetics problem in depth. We have utilized the histidine and maltose periplasmic permeases in Escherichia coli as model systems. Isogenic unc strains were used in order to study separately the effect of the proton-motive force and of ATP on transport. These parameters were analyzed concomitantly with transport assays. Starvation experiments indicate that both histidine and maltose transport require ATP generation and that a normal level of delta psi is not sufficient. Uncouplers such as carbonyl cyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol dissipated the delta psi without decreasing the ATP level and without significant effect on these permeases, showing that delta psi is not needed. Inhibition of ATP synthesis by arsenate eliminates transport through both permeases, confirming the need for ATP. In agreement with previous results with the glutamine permease (Plate, C. A. (1979) J. Bacteriol. 137, 221-225), valinomycin plus K+ dissipates delta psi without affecting ATP levels and inhibits histidine transport; however, maltose transport is not inhibited under these conditions. This result is discussed in terms of the artefactual side effects caused by valinomycin/K+ treatment on some periplasmic permeases. Histidine transport is also shown to be sensitive to changes in the cytoplasmic pH. It is concluded that periplasmic permeases indeed have an obligatory requirement for ATP (or a closely related molecule), whereas the proton-motive force is neither sufficient nor essential.  相似文献   

7.
Structure and mechanism of bacterial periplasmic transport systems   总被引:9,自引:0,他引:9  
Bacterial periplasmic transport systems are complex, multicomponent permeases, present in Gram-negative bacteria. Many such permeases have been analyzed to various levels of detail. A generalized picture has emerged indicating that their overall structure consists of four proteins, one of which is a soluble periplasmic protein that binds the substrate and the other three are membrane bound. The liganded periplasmic protein interacts with the membrane components, which presumably form a complex, and which by a series of conformational changes allow the formation of an entry pathway for the substrate. The two extreme alternatives for such pathway involve either the formation of a nonspecific hydrophilic pore or the development of a ligand-binding site(s) on the membrane-bound complex. One of the membrane-bound components from each system constitutes a family of highly homologous proteins containing sequence domains characteristic of nucleotide-binding sites. Indeed, in several cases, they have been shown to bind ATP, which is thus postulated to be involved in the energy-coupling mechanism. Interestingly, eukaryotic proteins homologous to this family of proteins have been identified (mammalianmdr genes and Drosophilawhite locus), thus indicating that they perform a universal function, presumably related to energy coupling in membrane-related processes. The mechanism of energy coupling in periplasmic permeases is discussed.  相似文献   

8.
ABC (ATP-binding cassette) transporters and helicases are large superfamilies of seemingly unrelated proteins, whose functions depend on the energy provided by ATP hydrolysis. Comparison of the 3D structures of their nucleotide-binding domains reveals that, besides two well-characterized ATP-binding signatures, the folds of their nucleotide-binding sites are similar. Furthermore, there are striking similarities in the positioning of residues thought to be important for ATP binding or hydrolysis. Interestingly, structures have recently been obtained for two ABC proteins that are not involved in transport activities, but that have a function related to DNA modification. These ABC proteins, which contain a nucleotide-binding site akin to those of typical ABC transporters, might constitute the missing link between the two superfamilies.  相似文献   

9.
Periplasmic transport systems consist of a membrane-bound complex and a periplasmic substrate-binding protein and are postulated to function by translocating the substrate either through a nonspecific pore or through specific binding sites located in the membrane complex. We have isolated mutants carrying mutations in one of the membrane-bound components of the histidine permease of Salmonella typhimurium that allow transport in the absence of both histidine-binding proteins HisJ and LAO (lysine-, arginine-, ornithine-binding protein). All of the mutations are located in a limited region of the nucleotide-binding component of the histidine permease, HisP. The mutants transported substrate in the absence of binding proteins only when the membrane-bound complex was produced in large amounts. At low (chromosomal) levels, the mutant complex was unable to transport substrate in the absence of binding proteins but transported it efficiently in the presence of HisJ. The alterations responsible for the mutations were identified by DNA sequencing; they are closely related to a group of hisP mutations isolated as suppressors of HisJ interaction mutations (G. F.-L. Ames and E. N. Spudich, Proc. Natl. Acad. Sci. USA 73:1877-1881, 1976). The hisP suppressor mutations behaved similarly to these newly isolated mutations despite the entirely different selection procedure. The results are consistent with the HisP protein carrying or contributing to the existence of a substrate-binding site that can be mutated to function in the absence of a binding protein.  相似文献   

10.
Buchaklian AH  Klug CS 《Biochemistry》2006,45(41):12539-12546
ATP-binding cassette (ABC) transporters make up one of the largest superfamilies of proteins known and have been shown to transport substrates ranging from lipids and antibiotics to sugars and amino acids. The dysfunction of ABC transporters has been linked to human pathologies such as cystic fibrosis, hyperinsulinemia, and macular dystrophy. Several bacterial ABC transporters are also necessary for bacterial survival and transport of virulence factors in an infected host. MsbA is a 65 kDa protein that forms a functional homodimer consisting of two six-helix transmembrane domains and two approximately 250 amino acid nucleotide-binding domains (NBD). The NBDs contain several conserved regions such as the Walker A, LSGGQ, and H motif that bind directly to ATP and align it for hydrolysis. MsbA transports lipid A, its native substrate, across the inner membrane of Gram-negative bacteria. The loss or dysfunction of MsbA results in a toxic accumulation of lipid A inside the cell, leading to cell-membrane instability and cell death. Using site-directed spin labeling electron paramagnetic resonance spectroscopy, conserved motifs within the MsbA NBD have been evaluated for structure and dynamics upon substrate binding. It has been determined that the LSGGQ NBD consensus sequence is consistent with an alpha-helical conformation and that these residues maintain extensive tertiary contacts throughout hydrolysis. The dynamics of the LSGGQ and the H-motif region have been studied in the presence of ATP, ADP, and ATP plus vanadate to identify the residues that are directly affected by interactions with the substrate before, after, and during hydrolysis, respectively.  相似文献   

11.
Recent studies have identified two sub-families of highly conserved polypeptides in a wide variety of organisms concerned with the transport of many different compounds, specific for each transport protein. Both families, represented by HisP and HlyB, respectively, have in common a highly conserved, approximately 25 kD domain, containing an ATP-binding site. The HisP sub-family essentially consists of cytoplasmic proteins which couple energy to the import of small substrates through cytoplasmic membrane permeases in Gram-negative bacteria. The HlyB (P-glycoprotein) sub-family, on the other hand, contains a second large domain which apparently acts as the transmembrane translocator itself, which in most cases drives the secretion of a variety of compounds. These membrane domains share a number of structural features which also serve to distinguish these proteins as a closely related group. Nevertheless, the compounds secreted by the HlyB sub-family include large polypeptides, polysaccharides and a variety of anti-tumour drugs. We describe here the properties of each of these remarkable proteins and we speculate on their possible mechanism of action.  相似文献   

12.
Helicases contain conserved motifs involved in ATP/magnesium/nucleic acid binding and in the mechanisms coupling nucleotide hydrolysis to duplex unwinding. None of these motifs are located at the adenine-binding pocket of the protein. We show here that the superfamily I helicase, helicase IV from Escherichia coli, utilizes a conserved glutamine and conserved aromatic residue to interact with ATP. Other superfamily I helicases such as, UvrD/Rep/PcrA also possess these residues but in addition they interact with adenine via a conserved arginine, which is replaced by a serine in helicase IV. Mutation of this serine residue in helicase IV into histidine or methionine leads to proteins with unaffected ATPase and DNA-binding activities but with low helicase activity. This suggests that residues located at the adenine-binding pocket, in addition to be involved in ATP-binding, are important for efficient coupling between ATP hydrolysis and DNA unwinding.  相似文献   

13.
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.  相似文献   

14.
Annexin VI (AnxVI) from porcine liver, a member of the annexin family of Ca(2+)- and membrane-binding proteins, has been shown to bind ATP in vitro with a K(d) in the low micromolar concentration range. However, this protein does not contain within its primary structure any ATP-binding consensus motifs found in other nucleotide-binding proteins. In addition, binding of ATP to AnxVI resulted in modulation of AnxVI function, which was accompanied by changes in AnxVI affinity to Ca2+ in the presence of ATP. Using limited proteolytic digestion, purification of protein fragments by affinity chromatography on ATP-agarose, and direct sequencing, the ATP-binding site of AnxVI was located in a C-terminal half of the AnxVI molecule. To further study AnxVI-nucleotide interaction we have employed a functional nucleotide analog, Cibacron blue 3GA (CB3GA), a triazine dye which is commonly used to purify multiple ATP-binding proteins and has been described to modulate their activities. We have observed that AnxVI binds to CB3GA immobilized on agarose in a Ca(2+)-dependent manner. Binding is reversed by EGTA and by ATP and, to a lower extent, by other adenine nucleotides. CB3GA binds to AnxVI also in solution, evoking reversible aggregation of protein molecules, which resembles self-association of AnxVI molecules either in solution or on a membrane surface. Our observations support earlier findings that AnxVI is an ATP-binding protein.  相似文献   

15.
The periplasmic histidine permease of Salmonella typhimurium has been reconstituted in inside-out vesicles (IOV) of Escherichia coli by disrupting the cells with a French press in the presence of a high concentration of the periplasmic histidine-binding protein, HisJ. Efflux from IOV, which is equivalent to uptake in whole cells, is induced by ATP. The reconstituted system depends on the presence of the membrane-bound permease proteins, HisQ, HisM, and HisP, and does not function if reconstitution is performed in the presence of a mutant HisJ protein, HisJ5625, that can bind histidine normally but can't interact properly with the membrane complex. Efflux is not induced by the nonhydrolyzable ATP analog, adenyl-5'-yl imidodiphosphate, supporting the contention that ATP hydrolysis is necessary. 8-Azido ATP inactivates IOV, indicating that the ATP effect occurs through the HisP protein, which has previously been shown to be modified by 8-azido ATP (Hobson, A., Weatherwax, R., and Ames, G.F.-L. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 733-7337). The estimated Km of the vesicles for ATP is about 200 microM. Vanadate, an inhibitor of phosphohydrolase enzymes, inhibits ATP-induced efflux. We conclude that ATP is likely to be the proximal energy source for periplasmic permeases.  相似文献   

16.
Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain (NBD2) of mouse P-glycoprotein were investigated by using two recombinantly expressed soluble proteins of different lengths and photoactive ATP analogues, 8-azidoadenosine triphosphate (8N(3)-ATP) and 2',3',4'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine triphosphate (TNP-8N(3)-ATP). The two proteins, Thr(1044)-Thr(1224) (NBD2(short)) and Lys(1025)-Ser(1276) (NBD2(long)), both incorporated the four consensus sequences of ABC (ATP-binding cassette) transporters, Walker A and B motifs, the Q-loop, and the ABC signature, while differing in N-terminal and C-terminal extensions. Radioactive photolabeling of both proteins was characterized by hyperbolic dependence on nucleotide concentration and high-affinity binding with K(0.5)(8N(3)-ATP) = 36-37 microM and K(0.5)(TNP-8N(3)-ATP) = 0.8-2.6 microM and was maximal at acidic pH. Photolabeling was strongly inhibited by TNP-ATP (K(D) = 0.1-5 microM) and ATP (K(D) = 0.5-2.7 mM). Since flavonoids display bifunctional interactions at the ATP-binding site and a vicinal steroid-interacting hydrophobic sequence [Conseil, G., Baubichon-Cortay, H., Dayan, G., Jault, J.-M., Barron, D., and Di Pietro, A. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9831-9836], a series of 30 flavonoids from different classes were investigated for structure-activity relationships toward binding to the ATP site, monitored by protection against photolabeling. The 3-OH and aromaticity of conjugated rings A and C appeared important, whereas opening of ring C abolished the binding in all but one case. It can be concluded that the benzopyrone portion of the flavonoids binds at the adenyl site and the phenyl ring B at the ribosyl site. The Walker A and B motifs, intervening sequences, and small segments on both sides are sufficient to constitute the ATP site.  相似文献   

17.
The transporter associated with antigen processing (TAP) is a key component of the cellular immune system. As a member of the ATP-binding cassette (ABC) superfamily, TAP hydrolyzes ATP to energize the transport of peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP is composed of TAP1 and TAP2, each containing a transmembrane domain and a nucleotide-binding domain (NBD). Here we investigated the role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs, which contain a canonical C-loop (LSGGQ) for TAP1 and a degenerate C-loop (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. However, TAP complexes with equivalent mutations in TAP2 still showed residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerate C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control peptide transport efficiency. All single site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites.  相似文献   

18.
ATP-binding cassette (ABC) transporters mediate the movement of molecules across cell membranes in both prokaryotes and eukaryotes. In ABC transporters, solute translocation occurs after ATP is either bound or hydrolyzed at the intracellular nucleotide-binding domains (NBDs). Molecular dynamics (MD) simulations have been employed to study the interactions of nucleotide with NBD. The results of extended (approximately 20 ns) MD simulations of HisP (total simulation time approximately 80 ns), the NBD of the histidine transporter HisQMP2J from Salmonella typhimurium, are presented. Analysis of the MD trajectories reveals conformational changes within HisP that are dependent on the presence of ATP in the binding pocket of the protein, and are sensitive to the presence/absence of Mg ions bound to the ATP. These changes are predominantly confined to the alpha-helical subdomain of HisP. Specifically there is a rotation of three alpha-helices within the subdomain, and a movement of the signature sequence toward the bound nucleotide. In addition, there is considerable conformational flexibility in a conserved glutamine-containing loop, which is situated at the interface between the alpha-helical subdomain and the F1-like subdomain. These results support the mechanism for ATP-induced conformational transitions derived from the crystal structures of other NBDs.  相似文献   

19.
ATP-binding cassette transporters ABCG5 (G5) and ABCG8 (G8) form a heterodimer that transports cholesterol and plant sterols from hepatocytes into bile. Mutations that inactivate G5 or G8 cause hypercholesterolemia and premature atherosclerosis. We showed previously that the two nucleotide-binding domains (NBDs) in the heterodimer are not functionally equivalent; sterol transport is abolished by mutations in the consensus residues of NBD2 but not of NBD1. Here, we examined the structural requirements of NBD1 for sterol transport. Substitutions of the D-loop aspartate and Q-loop glutamine in either NBD did not impair sterol transport. The H-loop histidine of NBD2 (but not NBD1) was required for sterol transport. Exchange of the signature motifs between the NBDs did not interfere with sterol transport, whereas swapping the Walker A, Walker B, and signature motifs together resulted in failure to transport sterols. Selected substitutions within NBD1 altered substrate specificity: transport of plant sterols by the heterodimer was preserved, whereas transport of cholesterol was abolished. In summary, these data indicate that NBD1, although not required for ATP hydrolysis, is essential for normal function of G5G8 in sterol transport. Both the position and structural integrity of NBD2 are essential for sterol transport activity.  相似文献   

20.
Ivetac A  Campbell JD  Sansom MS 《Biochemistry》2007,46(10):2767-2778
ABC transporters are integral membrane proteins which couple the energy of ATP hydrolysis to the translocation of solutes across cell membranes. BtuCD is a approximately 1100-residue protein found in the inner membrane of Gram-negative bacteria which transports vitamin B12. Vitamin B12 is bound in the periplasm by BtuF, which delivers the solute to the periplasmic entrance of the transporter protein complex BtuCD. Molecular dynamics simulations of the BtuCD and BtuCDF complexes (in a lipid bilayer) and of the isolated BtuD and BtuF proteins (in water) have been used to explore the conformational dynamics of this complex transport system. Overall, seven simulations have been performed, with and without bound ATP, corresponding to a total simulation time of 0.1 micros. Binding of ATP drives closure of the nucleotide-binding domains (NBDs) in BtuD in a symmetrical fashion, but not in BtuCD. It seems that ATP constrains the flexibility of the NBDs in BtuCD such that their closure may only occur upon binding of BtuF to the complex. Upon introduction of BtuF, and concomitant with NBD association, one ATP-binding site displays a closure, while the opposite site remains relatively unchanged. This asymmetry may reflect an initial step in the "alternating hydrolysis" mechanism and is consistent with measurements of nucleotide-binding stoichiometries. Principal components analysis of the simulation of BtuCD reveals motions that are comparable to those suggested in current transport models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号