首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interaction of TFIID in the minor groove of the TATA element.   总被引:32,自引:0,他引:32  
D K Lee  M Horikoshi  R G Roeder 《Cell》1991,67(6):1241-1250
TFIID binding in the minor groove of DNA at the TATA element was demonstrated by methylation interference and hydroxyl radical footprinting assays, and by binding studies with thymine analog substituted oligonucleotides. These results provide an explanation for TFIID-dependent DNA bending at the TATA element. TFIID binding shows phosphate contacts with the same residues that were found to be essential for TFIID interactions by methylation and thymine-specific modification interference assays. Based on previous studies implicating residues conserved between the direct repeats in DNA binding, as well as models of prokaryotic DNA binding proteins, these results also suggest a model in which the direct repeats of TFIID form two basic antiparallel beta ribbon arms that could contact DNA through the minor groove.  相似文献   

2.
TFIID binds in the minor groove of the TATA box.   总被引:40,自引:0,他引:40  
D B Starr  D K Hawley 《Cell》1991,67(6):1231-1240
  相似文献   

3.
4.
5.
6.
7.
8.
9.
Yeast and human TFIID with altered DNA-binding specificity for TATA elements.   总被引:14,自引:0,他引:14  
M Strubin  K Struhl 《Cell》1992,68(4):721-730
  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
L Pardo  N Pastor    H Weinstein 《Biophysical journal》1998,75(5):2411-2421
We report the results of an energy-based exploration of the components of selective recognition of the TATA box-binding protein (TBP) to a TATA box sequence that includes 1) the interaction between the hydrophobic Leu, Pro, and Phe residues of TBP with the TA, AT, AA, TT, and CG steps, by ab initio quantum mechanical calculations; and 2) the free energy penalty, calculated from molecular dynamics/potential of mean force simulations, for the conformational transition from A-DNA and B-DNA into the TA-DNA form of DNA observed in a complex with TBP. The GTAT, GATT, GAAT, and GTTT tetramers were explored. The results show that 1) the discrimination of TA, AT, AA, TT, or CG steps by TBP cannot rest on their interaction with the inserting Phe side chains; 2) the steric clash between the bulky and hydrophobic Pro and Leu residues and the protruding -NH2 group of guanine is responsible for the observed selectivity against any Gua-containing basepair; 3) the Pro and Leu residues cannot selectively discriminate among TA, AT, AA, or TT steps; and 4) the calculated energy required to achieve the TA-DNA conformation of DNA that is observed in the complex with TBP appears to be a key determinant for the observed selectivity against the AT, AA, and TT steps. The simulations also indicate that only the TA step can form a very efficient interbase hydrogen bond network in the TA-DNA conformation. Such an energetically stabilizing network is not achievable in the AA and TT steps. While it is viable in the AT step, structural constraints render the hydrogen bonding network energetically ineffective there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号