首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unapposed connexin hemichannels exhibit robust closure in response to membrane hyperpolarization and extracellular calcium. This form of gating, termed “loop gating,” is largely responsible for regulating hemichannel opening, thereby preventing cell damage through excessive flux of ions and metabolites. The molecular components and structural rearrangements underlying loop gating remain unknown. Here, using cysteine mutagenesis in Cx50, we demonstrate that residues at the TM1/E1 border undergo movement during loop gating. Replacement of Phe43 in Cx50 with a cysteine resulted in small or no appreciable membrane currents. Bath application of dithiothreitol or TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl) ethylenediamine), reagents that exhibit strong transition metal chelating activity, led to robust currents indicating that the F43C substitution impaired hemichannel function, producing “lock-up” in a closed or poorly functional state due to formation of metal bridges. In support, Cd2+ at submicromolar concentrations (50–100 nm) enhanced lock-up of F43C hemichannels. Moreover, lock-up occurred under conditions that favored closure, indicating that the sulfhydryl groups come close enough to each other or to other residues to coordinate metal ions with high affinity. In addition to F43C, metal binding was also found for G46C, and to a lesser extent, D51C substitutions, positions found to be pore-lining in the open state using the substituted-cysteine accessibility method, but not for A40C and A41C substitutions, which were not found to reside in the open pore. These results indicate that metal ions access the cysteine side chains through the open pore and that closure of the loop gate involves movement of the TM1/E1 region that results in local narrowing of the large aqueous connexin pore.Connexins are a large family of homologous integral membrane proteins that form gap junction (intercellular) channels that provide a direct communication pathway between neighboring cells. Gap junctions are formed by the docking of two hemichannels, which themselves can function in an undocked or unapposed configuration as ion channels that signal across the plasma membrane. Each hemichannel is composed of a hexamer of connexin subunits. The accepted membrane topology of a connexin subunit has four transmembrane domains (TM1–TM4)3 and two extracellular loops (E1 and E2) with amino and carboxyl termini located intracellularly (reviewed in Ref. 1).Connexin cell-cell channels and hemichannels are voltage dependent and two distinct voltage-sensitive gating mechanisms appear to be built into each hemichannel (2). One gating mechanism proposed to be located at the cytoplasmic end of the hemichannel is termed Vj gating, a name derived from studies of gap junction (cell-cell) channels describing sensitivity to transjunctional voltage, Vj, the voltage difference between coupled cells. The other gating mechanism is putatively ascribed to the extracellular end of the hemichannel and has been provisionally termed loop gating, because of the resemblance of gating transitions to those associated with initial opening of newly formed cell-cell channels (3, 4), a process that conceivably involves the extracellular loop domains.Loop gating is a robust gating mechanism that together with extracellular divalent cations, principally Ca2+, is largely responsible for keeping unapposed hemichannels closed at resting membrane potentials (5). Reports have suggested that extracellular divalent cations act as gating particles that enter and block the pore upon hyperpolarization (6, 7). An alternative model was recently proposed whereby extracellular divalent cations act as modulators of loop gating, an intrinsically voltage-sensitive mechanism, by stabilizing the closed conformation and shifting activation such that opening occurs at more positive potentials (8).Although loop gating plausibly involves conformational changes associated with the extracellular loops, molecular components underlying loop gating as well as the location of the putative gate remain unknown. A recent study using chick homologues to the mammalian connexins, Cx46 and Cx50, reported that two charged residues were important determinants of the different gating characteristics exhibited by these two connexin hemichannels (9). The implicated residues are at position 9 located in the NH2-terminal domain and position 43 in the E1 domain. In Cx46 hemichannels, Glu43 and other flanking residues at the TM1/E1 border (Ala39, Gly46, and Asp51) were shown to reside in the aqueous pore in the open state (10). Because it is likely that domains involved in permeation and gating of connexin channels are closely linked (reviewed in Ref. 11), we examined whether these residues are involved in structural rearrangements associated with loop gating. In this study, we engineered cysteines at residues in the TM1/E1 border in Cx50 hemichannels and used the ability of sulfhydryl groups to form disulfide bonds and/or to complex with heavy metal ions to report conformational changes that occur during gating.  相似文献   

2.
The structure of the pore is critical to understanding the molecular mechanisms underlying selective permeation and voltage-dependent gating of channels formed by the connexin gene family. Here, we describe a portion of the pore structure of unapposed hemichannels formed by a Cx32 chimera, Cx32*Cx43E1, in which the first extracellular loop (E1) of Cx32 is replaced with the E1 of Cx43. Cysteine substitutions of two residues, V38 and G45, located in the vicinity of the border of the first transmembrane (TM) domain (TM1) and E1 are shown to react with the thiol modification reagent, MTSEA–biotin-X, when the channel resides in the open state. Cysteine substitutions of flanking residues A40 and A43 do not react with MTSEA–biotin-X when the channel resides in the open state, but they react with dibromobimane when the unapposed hemichannels are closed by the voltage-dependent “loop-gating” mechanism. Cysteine substitutions of residues V37 and A39 do not appear to be modified in either state. Furthermore, we demonstrate that A43C channels form a high affinity Cd2+ site that locks the channel in the loop-gated closed state. Biochemical assays demonstrate that A43C can also form disulfide bonds when oocytes are cultured under conditions that favor channel closure. A40C channels are also sensitive to micromolar Cd2+ concentrations when closed by loop gating, but with substantially lower affinity than A43C. We propose that the voltage-dependent loop-gating mechanism for Cx32*Cx43E1 unapposed hemichannels involves a conformational change in the TM1/E1 region that involves a rotation of TM1 and an inward tilt of either each of the six connexin subunits or TM1 domains.  相似文献   

3.
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span.  相似文献   

4.
Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32.  相似文献   

5.
Loop-gating is one of two voltage-dependent mechanisms that regulate the open probability of connexin channels. The loop-gate permeability barrier is formed by a segment of the first extracellular loop (E1) (the parahelix) and appears to be accompanied by straightening of the bend angle between E1 and the first transmembrane domain (TM1). Here, all-atom molecular dynamics simulations are used to identify and characterize interacting van der Waals and electrostatic networks that stabilize the parahelices and TM1/E1 bend angles of the open Cx26 hemichannel. Dynamic fluctuations in an electrostatic network in each subunit are directly linked to the stability of parahelix structure and TM1/E1 bend angle in adjacent subunits. The electrostatic network includes charged residues that are pore-lining and thus positioned to be voltage sensors. We propose that the transition to the closed state is initiated by voltage-driven disruption of the networks that stabilize the open-state parahelix configuration, allowing the parahelix to protrude into the channel pore to form the loop-gate barrier. Straightening of the TM1/E1 bend appears to be a consequence of the reorganization of the interacting networks that accompany the conformational change of the parahelix. The electrostatic network extends across subunit boundaries, suggesting a concerted gating mechanism.  相似文献   

6.
Voltage is an important parameter that regulates the open probability of both intercellular channels (gap junctions) and undocked hemichannels formed by members of the connexin gene family. All connexin channels display two distinct voltage-gating processes, termed loop- or slow-gating and Vj- or fast-gating, which are intrinsic hemichannel properties. Previous studies have established that the loop-gate permeability barrier is formed by a large conformational change that reduces pore diameter in a region of the channel pore located at the border of the first transmembrane domain and first extracellular loop (TM1/E1), the parahelix (residues 42–51). Here, we use cadmium metal bridge formation to measure conformational changes reported by substituted cysteines at loci demarcating the intracellular (E109 and L108) and extracellular (Q56) entrance of hemichannels formed by the Cx32 chimera (Cx32*43E1). The results indicate that the intracellular pore entrance narrows from ∼15 Å to ∼10 Å with loop-gate but not apparently with Vj-gate closure. The extracellular entrance does not appear to undergo large conformational changes with either voltage-gating process. The results presented here combined with previous studies suggest that the loop-gate permeability is essentially focal, in that conformational changes in the parahelix but not the intracellular entrance are sufficient to prevent ion flux.  相似文献   

7.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

8.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

9.
The substituted cysteine accessibility method was applied to single Cx46 hemichannels to identify residues that participate in lining the aqueous pore of channels formed of connexins. Criteria for assignment to the pore included reactivity to sulfydryl-specific methanethiosulfonate (MTS) reagents from both sides of an open hemichannel and observable effects on open channel properties. We demonstrate reactivity to MTS reagents over a stretch of seventeen amino acids, D51 through L35, that constitute segments of E1 and TM1. Qualitatively, the nature of the effects caused by the Cys substitutions alone and their modification with MTS reagents of either charge indicate side chain valence is most influential in determining single channel properties with D51 and L35 defining the extracellular and intracellular limits, respectively, of the identified pore-lining region. A number of Cys substitutions beyond L35 in TM1 caused severe alterations in hemichannel function and precluded assignment to the pore. Although all six subunits can be modified by smaller MTS reagents, modifications appear limited to fewer subunits with larger reagents.  相似文献   

10.
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K+/Cl? permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore.  相似文献   

11.
pH is a potent modulator of gap junction (GJ) mediated cell-cell communication. Mechanisms proposed for closure of GJ channels by acidification include direct actions of H+ on GJ proteins and indirect actions mediated by soluble intermediates. Here we report on the effects of acidification on connexin (Cx)46 cell-cell channels expressed in Neuro-2a cells and Cx46 hemichannels expressed in Xenopus oocytes. Effects of acidification on hemichannels were examined macroscopically and in excised patches that permitted rapid (<1 ms) and uniform pH changes at the exposed hemichannel face. Both types of Cx46 channel were found to be sensitive to cytoplasmic pH, and two effects were evident. A rapid and reversible closure was reproducibly elicited with short exposures to low pH, and a poorly reversible or irreversible loss occurred with longer exposures. We attribute the former to pH gating and the latter to pH inactivation. Half-maximal reduction of open probability for pH gating in hemichannels occurs at pH 6.4. Hemichannels remained sensitive to cytoplasmic pH when excised and when cytoplasmic [Ca2+] was maintained near resting ( approximately 10(-7) M) levels. Thus, Cx46 hemichannel pH gating does not depend on cytoplasmic intermediates or a rise in [Ca2+]. Rapid application of low pH to the cytoplasmic face of open hemichannels resulted in a minimum latency to closure near zero, indicating that Cx46 hemichannels directly sense pH. Application to closed hemichannels extended their closed time, suggesting that the pH sensor is accessible from the cytoplasmic side of a closed hemichannel. Rapid closure with significantly reduced sensitivity was observed with low pH application to the extracellular face, but could be explained by H+ permeation through the pore to reach an internal site. Closure by pH is voltage dependent and has the same polarity with low pH applied to either side. These data suggest that the pH sensor is located directly on Cx46 near the pore entrance on the cytoplasmic side.  相似文献   

12.
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR’s TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR’s TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR’s gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.  相似文献   

13.
Gap junctions formed of connexin46 (Cx46) and connexin50 (Cx50) in lens fiber cells are crucial for maintaining lens transparency. We determined the functional properties of homotypic Cx46, heterotypic Cx46/Cx50, and heteromeric Cx46/Cx50 channels in a communication-deficient neuroblastoma (N2A) cell line, using dual whole-cell recordings. N2A cultures were stably and/or transiently transfected with Cx46, Cx50, and green fluorescent protein (EGFP). The macroscopic voltage sensitivity of homotypic Cx46 conformed to the two-state model (Boltzmann parameters: G(min) = 0.11, V(0) = +/- 48.1 mV, gating charge = 2). Cx46 single channels showed a main-state conductance of 140 +/- 8 pS and multiple subconductance states ranging from < or =10 pS to 60 pS. Conservation of homotypic properties in heterotypic Cx46/Cx50 cell pairs allowed the determination of a positive relative gating polarity for the dominant gating mechanisms in Cx46 and Cx50. Observed gating properties were consistent with a second gating mechanism in Cx46 connexons. Moreover, rectification was observed in heterotypic cell pairs. Some cell pairs in cultures simultaneously transfected with Cx46 and Cx50 exhibited junctional properties not observed in other preparations, suggesting the formation of heteromeric channels. We conclude that different combinations of Cx46 and Cx50 within gap junction channels lead to unique biophysical properties.  相似文献   

14.
Gap junctions are intercellular channels formed by the serial, head to head arrangement of two hemichannels. Each hemichannel is an oligomer of six protein subunits, which in vertebrates are encoded by the connexin gene family. All intercellular channels formed by connexins are sensitive to the relative difference in the membrane potential between coupled cells, the transjunctional voltage (Vj), and gate by the separate action of their component hemichannels (Harris, A.L., D.C. Spray, and M.V. Bennett. 1981. J. Gen. Physiol. 77:95-117). We reported previously that the polarity of Vj dependence is opposite for hemichannels formed by two closely related connexins, Cx32 and Cx26, when they are paired to form intercellular channels (Verselis, V.K., C.S. Ginter, and T.A. Bargiello. 1994. Nature. 368:348-351). The opposite gating polarity is due to a difference in the charge of the second amino acid. Negative charge substitutions of the neutral asparagine residue present in wild-type Cx32 (Cx32N2E or Cx32N2D) reverse the gating polarity of Cx32 hemichannels from closure at negative Vj to closure at positive Vj. In this paper, we further examine the mechanism of polarity reversal by determining the gating polarity of a chimeric connexin, in which the first extracellular loop (E1) of Cx32 is replaced with that of Cx43 (Cx43E1). The resulting chimera, Cx32*Cx43E1, forms conductive hemichannels when expressed in single Xenopus oocytes and intercellular channels in pairs of oocytes (Pfahnl, A., X.W. Zhou, R. Werner, and G. Dahl. 1997. Pflügers Arch. 433:733-779). We demonstrate that the polarity of Vj dependence of Cx32*Cx43E1 hemichannels in intercellular pairings is the same as that of wild-type Cx32 hemichannels and is reversed by the N2E substitution. In records of single intercellular channels, Vj dependence is characterized by gating transitions between fully open and subconductance levels. Comparable transitions are observed in Cx32*Cx43E1 conductive hemichannels at negative membrane potentials and the polarity of these transitions is reversed by the N2E substitution. We conclude that the mechanism of Vj dependence of intercellular channels is conserved in conductive hemichannels and term the process Vj gating. Heteromeric conductive hemichannels comprised of Cx32*Cx43E1 and Cx32N2E*Cx43E1 subunits display bipolar Vj gating, closing to substates at both positive and negative membrane potentials. The number of bipolar hemichannels observed in cells expressing mixtures of the two connexin subunits coincides with the number of hemichannels that are expected to contain a single oppositely charged subunit. We conclude that the movement of the voltage sensor in a single connexin subunit is sufficient to initiate Vj gating. We further suggest that Vj gating results from conformational changes in individual connexin subunits rather than by a concerted change in the conformation of all six subunits.  相似文献   

15.
Connexin hemichannels are robustly regulated by voltage and divalent cations. The basis of voltage-dependent gating, however, has been questioned with reports that it is not intrinsic to hemichannels, but rather is derived from divalent cations acting as gating particles that block the pore in a voltage-dependent manner. Previously, we showed that connexin hemichannels possess two types of voltage-dependent gating, termed Vj and loop gating, that in Cx46 operate at opposite voltage polarities, positive and negative, respectively. Using recordings of single Cx46 hemichannels, we found both forms of gating persist in solutions containing no added Mg2+ and EGTA to chelate Ca2+. Although loop gating persists, it is significantly modulated by changing levels of extracellular divalent cations. When extracellular divalent cation concentrations are low, large hyperpolarizing voltages, exceeding −100 mV, could still drive Cx46 hemichannels toward closure. However, gating is characterized by continuous flickering of the unitary current interrupted by occasional, brief sojourns to a quiet closed state. Addition of extracellular divalent cations, in this case Mg2+, results in long-lived residence in a quiet closed state, suggesting that hyperpolarization drives the hemichannel to close, perhaps by initiating movements in the extracellular loops, and that divalent cations stabilize the fully closed conformation. Using excised patches, we found that divalent cations are only effective from the extracellular side, indicative that the binding site is not cytoplasmic or in the pore, but rather extracellular. Vj gating remains essentially unaffected by changing levels of extracellular divalent cations. Thus, we demonstrate that both forms of voltage dependence are intrinsic gating mechanisms in Cx46 hemichannels and that the action of external divalent cations is to selectively modulate loop gating.  相似文献   

16.
Intercellular channels formed of members of the gene family of connexins (Cxs) vary from being substantially cation selective to being anion selective. We took advantage of the ability of Cx46 to function as an unopposed hemichannel to examine the basis of Cx charge selectivity. Previously we showed Cx46 hemichannels to be large pores that predominantly conduct cations and inwardly rectify in symmetric salts, properties suggesting selectivity is influenced by fixed negative charges located toward the extracellular end of the pore. Here we demonstrate that high ionic strength solutions applied to the extracellular, but not the intracellular, side of Cx46 hemichannels substantially reduce the ratio of cation to anion permeability. Substitution of the first extracellular loop (E1) domain of Cx32, an anion-preferring Cx, reduces conductance, converts Cx46 from cation to anion preferring, and changes the I-V relation form inwardly to outwardly rectifying. These data suggest that fixed negative charges influencing selectivity in Cx46 are located in E1 and are substantially reduced and/or are replaced with positive charges from the Cx32 E1 sequence. Extending studies to Cx46 cell-cell channels, we show that they maintain a strong preference for cations, have a conductance nearly that expected by the series addition of hemichannels, but lack rectification in symmetric salts. These properties are consistent with preservation of the fixed charge region in E1 of hemichannels, which upon docking, become symmetrically placed near the center of the cell-cell channel pore. Furthermore, heterotypic cell-cell channels formed by pairing Cx46 with Cx32 or Cx43 rectify in symmetric salts in accordance with the differences in the charges we ascribed to E1. These data are consistent with charged residues in E1 facing the channel lumen and playing an important role in determining Cx channel conductance and selectivity.  相似文献   

17.
Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119–144; referred to as “L2”). Structural analysis of L2 shows two α-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43.  相似文献   

18.
Regulation of cell-cell communication by the gap junction protein connexin43 can be modulated by a variety of connexin-associating proteins. In particular, c-Src can disrupt the connexin43 (Cx43)-zonula occludens-1 (ZO-1) interaction, leading to down-regulation of gap junction intercellular communication. The binding sites for ZO-1 and c-Src correspond to widely separated Cx43 domains (approximately 100 residues apart); however, little is known about the structural modifications that may allow information to be transferred over this distance. Here, we have characterized the structure of the connexin43 carboxyl-terminal domain (Cx43CT) to assess its ability to interact with domains from ZO-1 and c-Src. NMR data indicate that the Cx43CT exists primarily as an elongated random coil, with two regions of alpha-helical structure. NMR titration experiments determined that the ZO-1 PDZ-2 domain affected the last 19 Cx43CT residues, a region larger than that reported to be required for Cx43CT-ZO-1 binding. The c-Src SH3 domain affected Cx43CT residues Lys-264-Lys-287, Ser-306-Glu-316, His-331-Phe-337, Leu-356-Val-359, and Ala-367-Ser-372. Only region Lys-264-Lys-287 contains the residues previously reported to act as an SH3 binding domain. The specificity of these interactions was verified by peptide competition experiments. Finally, we demonstrated that the SH3 domain could partially displace the Cx43CT-PDZ-2 complex. These studies represent the first structural characterization of a connexin domain when integrated in a multimolecular complex. Furthermore, we demonstrate that the structural characteristics of a disordered Cx43CT are advantageous for signaling between different binding partners that may be important in describing the mechanism of channel closure or internalization in response to pathophysiological stimuli.  相似文献   

19.
Connexin37 (Cx37) is expressed principally in endothelial cells. We have introduced individual point mutations (Cx37-V156D or Cx37-K162E) in the putative pore lining segment M3 of a polymorphic human Cx37 (Cx37-S319) and expressed them in N2A and RIN cells. RT-PCR and immunofluorescence microscopy were used to confirm the expression of the proteins. Stably transfected cells were subjected to electrophysiological studies. Experiments were performed on cell pairs using the dual whole cell patch-clamp method. Single channel records showed that both mutants display a variety of conductive states (Cx37-V156D, 47-250 pS; Cx37-K162E, 58-342 pS) in contrast to the typical high conductance of 340-375 pS and subconductive state of 60-80 pS reported for Cx37-S319. Analysis of the macroscopic data for Cx37-K162E revealed a broadened Vo indicating the influence of the mutation on voltage gating. Our data indicate that substitution of a conserved residue with a charged residue could cause changes in the main state and/or in the size of the pore. It is possible that these particular residues in the M3 domain interact electrostatistically with several of the other domains in the Cx37 protein.  相似文献   

20.
Chemical gating of gap junction channels   总被引:3,自引:0,他引:3  
Chemical gating of gap junction channels is a complex phenomenon that may involve intra- and intermolecular interactions among connexin domains and a cytosolic molecule (calmodulin?) that may function as channel plug. This article focuses on the methodology we have employed for studying the molecular basis of chemical gating by lowered cytosolic pH. Our approach has combined molecular genetics and biophysics, using exposure to 100% CO(2) for assaying chemical gating efficiency. Chimeras of connexin 32 (Cx32) and connexin 38 (Cx38) and Cx32 mutants modified at residues of the cytoplasmic loop, the initial C-terminus domain, or both have been expressed in Xenopus oocytes, and channel expression and gating have been tested electrophysiologically by double voltage clamp. In addition, various channel forms, including homotypic, heterotypic, and heteromeric channel combinations, have been evaluated for chemical gating sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号