首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally, yields precise predictions about expected levels of host male paternity. These predictions will enable a more rigorous assessment of field studies designed to test adaptive hypotheses of host-parasite cooperation.  相似文献   

2.
In a population of moorhens (Gallinula chloropus), at least27% of netting females laid one or more eggs in a neighbor'snest Females laid parasitically under three conditions: 56%of parasitic eggs were from nesting females that preceded layinga dutch in their own nest by a parasitic laying bout, 19% werefrom females whose nests were depredated before clutch completionand that laid the following egg parasiticaDy, and 25% were froma small number of females without territories, "non-nesting"parasites, that each laid a series of parasitic eggs. Clutchsizes varied greatly between females, but nesting females eachlaid a consistent clutch size both within and between seasonsfor a given mate and territory. Nesting females that employeda dual strategy of brood parasitism and parental care producedextra eggs that they laid in the nests of neighbors before layinga dutch in their own nests. Two out of ten females whose dutchesI experimentally removed during the laying period were successfullyinduced to lay their next egg in the nest of a neighbor. Nestingfemales that laid parasitically selected their hosts opportunisticallyfrom among the nests dosest to their territories. An experimentin which parasitic eggs were removed and hosts left to rearonly their own young showed that parasites did not choose hoststhat were better parents than pairs with contemporary neststhat were not parasitized. Females that only laid parasiticaDywithin a given season timed their parasitic laying bouts poorlyand achieved no reproductive success. Parasitic young rarelyfledged, and the mean seasonal reproductive success of nestingbrood parasites did not differ from that of nonparasitic females.However, the variance in reproductive success of nesting broodparasites was significantly higher than that of nonparasiticfemales.  相似文献   

3.
Conspecific brood parasitism (CBP), females laying eggs in the nest of other ‘host’ females of the same species, is a common alternative reproductive tactic among birds. For hosts there are likely costs of incubating and rearing foreign offspring, but costs may be low in species with precocial chicks such as waterfowl, among which CBP is common. Waterfowl show strong female natal philopatry, and spatial relatedness among females may influence the evolution of CBP. Here we investigate fine‐scale kin structure in a Baltic colony of barnacle geese, Branta leucopsis, estimating female spatial relatedness using protein fingerprints of egg albumen, and testing the performance of this estimator in known mother‐daughter pairs. Relatedness was significantly higher between neighbour females (nesting ≤ 40 metres from each other) than between females nesting farther apart, but there was no further distance trend in relatedness. This pattern may be explained by earlier observations of females nesting close to their mother or brood sisters, even when far from the birth nest. Hosts and parasites were on average not more closely related than neighbour females. In 25 of 35 sampled parasitized nests, parasitic eggs were laid after the host female finished laying, too late to develop and hatch. Timely parasites, laying eggs in the host’s laying sequence, had similar relatedness to hosts as that between neighbours. Females laying late parasitic eggs tended to be less related to the host, but not significantly so. Our results suggest that CBP in barnacle geese might represent different tactical life‐history responses.  相似文献   

4.
Dozens of studies have documented that brood parasites are well adapted to a brood parasitic lifestyle but not all parasitism events are successful. Co-evolution between brood parasites and their hosts is a dynamic process so it is reasonable to expect that a female brood parasite may commit errors during egg deposition by laying her eggs outside the laying period of the host, with consequent impacts on her fitness. Using an extensive dataset from a long-term study, we evaluated egg-laying patterns and errors related to the timing of egg-laying in the Common Cuckoo Cuculus canorus (hereafter ‘Cuckoo’). Specifically, we tested whether the Cuckoo avoids laying before or on the day of host clutch initiation to reduce the risk of rejection of parasitic eggs, whether laying errors will be more frequent in periods with a lack of active host nests, and whether the laying errors will be more frequent in periods with intense Cuckoo parasitism and a consequent lack of suitable host nests. We found that about one-third of Cuckoo eggs were laid on the host clutch initiation day or 1 day before, and the percentage of Cuckoo eggs laid decreased thereafter. Surprisingly, the probability of Cuckoo egg acceptance by the hosts was not affected by the egg-laying stage of the host clutch. Errors in the timing of egg-laying with fatal consequences (i.e. those precluding Cuckoo hatching because of laying in incubated or deserted clutches) were recorded in about 5% of cases. Only laying date of a Cuckoo egg had a significant effect on the probability of errors, which increased during the breeding season. This may be related to the higher number of deserted and incubated host nests at the site at the end of the breeding season. Errors in egg-laying may be attributed to young and inexperienced females but also impaired body condition or intraspecific competition may cause this behaviour. Future studies, which will test these possible explanations, will help to understand better the mechanism of co-evolutionary arms races and differences between host specialist and generalist brood parasites in various host–parasite systems.  相似文献   

5.
Conspecific brood parasitism (CBP), an alternative reproductive tactic where some females lay eggs in the nests of other females of the same species, occurs in many animals with egg care. It is particularly common in waterfowl, for reasons that are debated. Many waterfowl females nest near their birthplace, making it likely that some local females are relatives. We analyse brood parasitism in a Hudson Bay population of common eiders, testing predictions from two alternative hypotheses on the role of relatedness in CBP. Some models predict host-parasite relatedness, others predict that parasites avoid close relatives as hosts. To distinguish between the alternatives, we use a novel approach, where the relatedness of host-parasite pairs is tested against the spatial population trend in pairwise relatedness. We estimate parasitism, nest take-over and relatedness with protein fingerprinting and bandsharing analysis of egg albumen, nondestructively sampled from each new egg in the nest throughout the laying period. The results refute the hypothesis that parasites avoid laying eggs in the nests of related hosts, and corroborate the alternative of host-parasite relatedness. With an estimated r of 0.12-0.14, females laying eggs in the same nest are on average closer kin than nesting neighbour females. Absence of a population trend in female pairwise relatedness vs. distance implies that host-parasite relatedness is not only an effect of strong natal philopatry: some additional form of kin bias is also involved.  相似文献   

6.
Intraspecific brood parasitism (IBP) is a remarkable phenomenon by which parasitic females can increase their reproductive output by laying eggs in conspecific females' nests in addition to incubating eggs in their own nest. Kin selection could explain the tolerance, or even the selective advantage, of IBP, but different models of IBP based on game theory yield contradicting predictions. Our analyses of seven polymorphic autosomal microsatellites in two eider duck colonies indicate that relatedness between host and parasitizing females is significantly higher than the background relatedness within the colony. This result is unlikely to be a by-product of relatives nesting in close vicinity, as nest distance and genetic identity are not correlated. For eider females that had been ring-marked during the decades prior to our study, our analyses indicate that (i) the average age of parasitized females is higher than the age of nonparasitized females, (ii) the percentage of nests with alien eggs increases with the age of nesting females, (iii) the level of IBP increases with the host females' age, and (iv) the number of own eggs in the nest of parasitized females significantly decreases with age. IBP may allow those older females unable to produce as many eggs as they can incubate to gain indirect fitness without impairing their direct fitness: genetically related females specialize in their energy allocation, with young females producing more eggs than they can incubate and entrusting these to their older relatives. Intraspecific brood parasitism in ducks may constitute cooperation among generations of closely related females.  相似文献   

7.
Recent studies, which have found evidence for kin-biased egg donation, have sparked interest in re-assessing the parasitic nature of conspecific brood parasitism (CBP). Since host–parasite kinship is essential for mutual benefits to arise from CBP, we explored the role of relatedness in determining the behaviour of conspecific nest parasites and their hosts in nesting female Barrow's goldeneyes ( Bucephala islandica ), a duck in which CBP is common. The results revealed that the amount of parasitism increased with host–parasite relatedness, the effect of which was independent of geographical proximity of host and parasite nests. Proximity per se was also positively associated with the amount of parasitism. Furthermore, while hosts appeared to reduce their clutch size as a response to the presence of parasitic eggs, the magnitude of host clutch reduction also tended to increase with increasing relatedness to the parasite. Hence, our results indicate that both relatedness and spatial proximity are important determinants of CBP, and that host clutch reduction may be an adaptation to nest parasitism, modulated by host–parasite relatedness. Taken together, the results provide a demonstration that relatedness influences host and parasite behaviour in Barrow's goldeneyes, resulting in kin-biased egg donation.  相似文献   

8.
Conspecific brood parasitism (CBP) is a common strategy in several species of birds. Currently, some studies suggest that relatedness between host and parasite enhances CBP, since indirect fitness benefits could select for acceptance of related eggs by hosts. Conversely, parasites should avoid laying eggs in nests of relatives if this is costly for the host. Based on the latter argument, kinship should not promote brood parasitism. A recent model clarified this relationship, and showed that kinship can promote brood parasitism, assuming kin recognition. However, in that model kin recognition was assumed perfect. Here we present a model that addresses the role of relatedness and kin selection in CBP, when kin recognition is not perfect and hosts do not always detect parasitism. We consider both the indirect fitness of the parasite and the possible responses of the host. Our results indicate that the existence and accuracy of a kin recognition system is crucial to the final outcome. When CBP represents a cost to the host, a parasitic female that has the choice should avoid parasitizing relatives, unless (1) the costs are not too high and (2) hosts can accurately enough recognize eggs laid by relatives, rejecting them less often than eggs laid by nonkin. But if ‘parasitism’ enhances the direct fitness of the host (which is possible in species with precocial young) parasites should choose relatives whenever possible, even if hosts do not recognize kin eggs. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

9.
Brood parasites rely entirely on the parental care of host species to raise the parasitic nestlings until independence. The reproductive success of avian brood parasites depends on finding host nests at a suitable stage (i.e. during egg laying) for parasitism and weakly defensive (i.e. non‐ejector) hosts. Finding appropriate nests for parasitism may, however, vary depending on ecological conditions, including parasite abundance in the area, which also varies from one year to another and therefore may influence coevolutionary relationships between brood parasites and their hosts. In this scenario, we explored: 1) the degree of laying synchronization between great spotted cuckoos Clamator glandarius and magpies Pica pica during two breeding seasons, which varied in the level of selection pressure due to brood parasitism (i.e. parasitism rate); 2) magpie responses to natural parasitism in the pre‐laying period and successfulness of parasitic eggs laid at this stage; and 3) magpie responses to experimental parasitism performed at different breeding stages. We found that, during the year of higher parasitism rate, there was an increase in the percentage of parasitic eggs laid before magpies started laying. However, the synchronization of laying was poor both years regardless of the differences in the parasitism rate. The ejection rate was significantly higher during the pre‐egg‐laying and the post‐hatching stages than during the laying stage, and hatching success of parasitic eggs laid during the pre‐egg‐laying stage was zero. Thus, non‐synchronized parasitic eggs are wasted and therefore poor synchronization should be penalized by natural selection. We discuss four different hypotheses explaining poor synchronization.  相似文献   

10.
Conspecific brood parasites lay eggs in nests of other females of the same species. A variety of methods have been developed and used to detect conspecific brood parasitism (CBP). Traditional methods may be inaccurate in detecting CBP and in revealing its true frequency. On the other hand more accurate molecular methods are expensive and time consuming. Eadie developed a method for revealing CBP based on differences in egg morphology. That method is based on Euclidean distances calculated for pairs of eggs within a clutch using standardized egg measurements (length, width and weight). We tested the applicability of this method in the common pochard Aythya ferina using nests that were identified as parasitized (39 nests) or non‐parasitized (16 nests) based on protein fingerprinting of eggs. We also analyzed whether we can distinguish between parasitic and host eggs in the nest. We found that variation in MED can be explained by parasitism but there was a huge overlap in MED between parasitized and non‐parasitized nests. MED also increased with clutch size. Using discriminant function analysis (DFA) we found that only 76.4% of nests were correctly assigned as parasitized or non‐parasitized and only 68.3% of eggs as parasitic or host eggs. Moreover we found that MED in parasitized nests increased with relatedness of the females that laid eggs in the nest. This finding was supported by positive correlation between MED and estimated relatedness in female–female pairs. Although variation in egg morphology is associated with CBP, it does not provide a reliable clue for distinguishing parasitized nests from non‐parasitized nests in common pochard.  相似文献   

11.
Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg‐laying animals, among birds most often in species with large clutches and self‐feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female‐biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host–parasite (h‐p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h‐p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over‐represented in h‐p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h‐p relatedness was higher than between nesting close neighbours, and hosts parasitized by non‐relatives aggressively rejected other females. In another species, birth nest‐mates (mother–daughters, sisters) associated in the breeding area as adults, and became h‐p pairs more often than expected by chance. These and other results point to recognition of birth nest‐mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female‐biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin‐related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.  相似文献   

12.
Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host’s ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins’ behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch.  相似文献   

13.
A field study of the breeding ecology of the Japanese aucha perch, Siniperca kawamebari, and brood parasitism by the Japanese minnow, Pungtungia herzi, on nests of the perch was carried out from 1989 to 1991. Observations of perch nests under natural conditions in 1990 showed that brood parasitism by the minnow was concentrated on host nests in which nest owners had just begun their nesting cycle. When spawned in a perch nest with recently spawned perch eggs, parasite eggs always hatched earlier than host eggs. An experiment with imitation perch eggs in 1991 confirmed that changing colour of host eggs was the cue for the parasites to distinguish between different developmental stages of host eggs. Parasite eggs rapidly disappeared without guarding by a host male (Baba et al. 1990). This loss was caused by predation by fishes. Parasite fry left the nest immediately after hatching, so parasite eggs spawned in a host nest in an early stage should be well guarded until they hatch. In the field, minnows deposited their eggs in perch nests which had larger numbers of newly spawned perch eggs. Since the perch males always deserted their nests when their own eggs disappeared, the parasite's choice of host nests with larger numbers of host eggs may ensure survival of the parasite eggs. The timing of egg deposition and choice of host nest by the minnow appear to be adaptive in terms of brood parasitism on nests of the perch.  相似文献   

14.
Dickinson JL 《Molecular ecology》2007,16(13):2610-2612
Conspecific brood parasitism, where females of the same species lay eggs in each other's nests, is common in waterfowl, and is usually considered costly to host females, which are stuck looking after eggs and chicks that are not their own. However, since female waterfowl often exhibit an unusual propensity to nest near where they were born, there has been some uncertainty over whether, in ducks and geese, laying in nests of conspecifics really is parasitism. Do parasitic and host females tend to be related? And is parasitism actually a form of cooperation in disguise? In a population in Hudson Bay, Andersson & Waldeck (this issue) found that ‘parasitic’ eggs in nests of the common eider, Somateria mollissima sedentaria, are more closely related to host eggs than expected by chance. In fact, host and ‘donor’ eggs are more closely related than are females breeding at neighbouring nests. The Hudson Bay population of common eiders is unusual, because unlike in more benign climates, females do not tend to breed near their natal nest. Spatial proximity alone cannot account for the high relatedness between host eggs and ‘dumped’ or donor eggs. Instead, the high relatedness values are probably the result of active recognition, where females favour kin, either when dumping or accepting eggs. These new data, along with evidence indicating that the donor lays the first egg in the nest nearly half the time, suggest that what appears to be parasitism in common eiders may be a form of kin‐based cooperation.  相似文献   

15.
Why should the hosts of brood parasites accept and raise parasitic offspring that differ dramatically in appearance from their own? There are two solutions to this evolutionary enigma. (1) Hosts may not yet have evolved the capability to discriminate against the parasite, or (2) parasite-host systems have reached an evolutionary equilibrium. Avian brood parasites may either gain renesting opportunities or force their hosts to raise parasitic offspring by destroying or preying upon host eggs or nestlings following host ejection of parasite offspring. These hypotheses may explain why hosts do not remove parasite offspring because only then will hosts avoid clutch destruction by the cuckoo. Here we show experimentally that if the egg of the parasitic great spotted cuckoo Clamator glandarius is removed from nests of its magpie Pica pica host, nests suffer significantly higher predation rates than control nests in which parasite eggs have not been removed. Using plasticine model eggs resembling those of magpies and observations of parasites, we also confirm that great spotted cuckoos that have laid an ejected egg are indeed responsible for destruction of magpie nests with experimentally ejected parasite eggs. Cuckoos benefit from destroying host offspring because they thereby induce some magpies to renest and subsequently accept a cuckoo egg.  相似文献   

16.
《Animal behaviour》1988,36(5):1282-1294
Biochemical genetic markers were used along with conventional methods (abnormal laying sequence/clutch size, unusual egg shape/pigmentation) to identify intraspecific nest parasitism at two British nestbox colonies of the European starling. Between 11 and 37% of first clutches were parasitized during 1977–1979. Parasitic females probably comprised all of the following categories: (1) paired females contesting a nestbox occupied by another pair; (2) previously paired females who had laid a clutch but had been unsuccessful; (3) unpaired females who had copulated with males that already had a mate and nest site; and (4) ‘professional’ nest parasites who distributed at lest some of their eggs in one or more nests other than their own. Although parasitized nests had higher clutch sizes, parasitism led to fewer host young fledging per egg laid, mainly through the eviction of eggs and subsequent nest desertion. Number of parasitic young fledged per egg laid was highest when eggs were laid synchronously with the host, when host clutches were larger, or a smaller number of parasite eggs were added to a nest, thus favouring parasites that distribute their eggs amongst a number of nests. A greater pressure on nest sites may have accounted for the higher levels of parasitism at the Aberdeen colony and for the greater number of parasite eggs laid in a nest. Although most parasitic female starlings appeared to be much less successful than non-parasitic ones, nest parasitism in the starling might evolve directly when one or more of the following advantages are present. (1) There are no constraints on the number of eggs a female may lay but there are constraints on the number of young she may feed adequately. (2) Female survival is increased by having fewer or no eggs/young to care for. (3) Current feeding conditions favour the survival of more young than would be produced by the most common clutch size. Intraspecific nest parasitism is considered to be a first stage in the evolution of interspecific nest parasitism.  相似文献   

17.
In conspecific brood parasitism (CBP), a parasitic female takes advantage of the parental care performed by a host female by laying eggs in the nest of the host. The host female raises the offspring of the parasitic female as well as her own. In species where local females are related, direct costs for the host might be more than compensated for by gains in inclusive fitness through increased reproduction of a related parasite, but the role of relatedness in CBP is debated. This inclusive-fitness model of parasitism, structured as a game between host and parasite, suggests that both females can gain inclusive fitness and that host-parasite relatedness can therefore facilitate the evolution of CBP. Crucial assumptions are that there is kin discrimination and a potential for host resistance to parasitism by unrelated females but close relatives are accepted. The cost of parasitism in terms of reduced clutch size or offspring survival for the host must not be large; otherwise, parasitism will reduce her inclusive fitness. Therefore, if these costs are high, it does not benefit a host to accept a parasite, even if the parasite is closely related. The secondary female may still have higher fitness from parasitism, but if the costs are high, she should parasitize an unrelated host, not a relative. This requires that the reduction in parasite success that a host can cause by resistance is not too large; otherwise, it will be better for the secondary female to parasitize an accepting related host or to nest solitarily. For these reasons, host-parasite relatedness is most likely to occur in animals where costs of being parasitized are low and host resistance can markedly reduce the success of an unrelated parasite. When costs are higher, parasitism of unrelated hosts may be better, and if host resistance strongly reduces parasite success, solitary breeding is preferable. In some cases, CBP is directly advantageous for the host, and it may sometimes evolve in close connection with cooperative breeding, which is also considered in the model. Some but not all empirical results support these ideas, and more detailed studies of behavior, relatedness, and reproduction of host and parasite are needed for critical tests.  相似文献   

18.
Conspecific brood parasitism allows females to exploit other females' nests and enhance their reproductive output. Here, we test a recent theoretical model of how host females gain inclusive fitness from brood parasitism. High levels of relatedness between host and parasitizer can be maintained either by: (a) kin recognizing and parasitizing each other as a form of cooperative breeding or (b) natal philopatry and nest site fidelity facilitating the formation of kin groups, thereby increasing the probability of parasitism between relatives nesting in close proximity. To address these two hypotheses we genotyped feathers and hatch membranes of common eiders (Somateria mollissima) from western Hudson Bay, Canada, using a noninvasive sampling methodology. We found that most instances of brood parasitism do result in inclusive fitness gains. Furthermore, females with failed nests moved an average of 492 m from their previous year's nest site, while successful females only moved an average of 13 m. Therefore, we observed host–parasite relatedness can occur at levels higher than would be expected by chance even in the absence of kin grouping, suggesting that closely related females nesting near one another is not essential to maintain high host–parasitizer relatedness. In addition, kin grouping is only a transient phenomenon that cannot occur every year due to the propensity for females of failed nests to nest farther away from their nest site in subsequent years than females with successful nests, which provides support for kin recognition as a more likely mechanism to maintain high host–parasitizer relatedness over time.  相似文献   

19.
Conspecific brood parasitism (CBP) is an alternative reproductive tactic found in many animals with parental care. Parasitizing females lay eggs in the nests of other females (hosts) of the same species, which incubate and raise both their own and the foreign offspring. The causes and consequences of CBP are debated. Using albumen fingerprinting of eggs for accurately detecting parasitism, we here analyse its relation to female condition and clutch size in High Arctic common eiders Somateria mollissima borealis. Among 166 clutches in a Svalbard colony, 31 (19%) contained eggs from more than one female, and 40 of 670 eggs (6%) were parasitic. In 6 cases an active nest with egg(s) was taken over by another female. Many suitable nest sites were unoccupied, indicating that CBP and nest takeover are reproductive tactics, not only consequences of nest site shortage. Similarity in body mass between female categories suggests that condition does not determine whether a nesting female becomes parasitised. There was no evidence of low condition in parasites: egg size was similar in hosts and parasites, and parasitism was equally frequent early and late in the laying season. Meta‐analysis of this and 3 other eider studies shows that there is a cost of being parasitised in this precocial species: host females laid on average 7% fewer eggs than other females.  相似文献   

20.
Conspecific brood parasitism (CBP) is a reproductive tactic whereby a parasitic female lays its eggs into the nests of other conspecific females. Genetic‐based data on the occurrence of CBP in birds, however, is still relatively scarce. We analysed prevalence of CBP in a ground‐nesting diving duck, the common pochard Aythya ferina, using a set of 17 microsatellites. Compared to related species, our population showed a relatively high level of CBP, with 39% of genotyped pochard eggs laid parasitically and 89% of nests containing ≥ 1 parasitic egg. In addition, we observed relatively high rates of interspecific brood parasitism (13% of eggs), caused predominantly by mallard Anas plathyrhynchos and tufted duck Aythya fuligula. CBP eggs had decreased hatching success compared to host eggs, with 65% of CBP and 95% of non‐CBP genotyped eggs hatching successfully. Our data suggest that this was probably due to improper timing of parasitic egglaying, which compromised synchronised hatching of CBP and host‐eggs. Despite high rates of CBP in our pochard popu lation, fitness costs associated with this reproductive tactic appear to be low for host females since neither clutch size nor host‐egg hatching probability were reduced due to CBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号