首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(11-12):1333-1341
Abstract

Melatonin is an endogenous indolamine, classically known as a light/dark regulator. Besides classical functions, melatonin has also showed to have a wide range of antitumoral effects in numerous cancer experimental models. However, no definite mechanism has been described to explain the whole range of antineoplasic effects. Here we describe a dual effect of melatonin on intracellular redox state in relation to its antiproliferative vs cytotoxic actions in cancer cells. Thus, inhibition of proliferation correlates with a decrease on intracellular reactive oxygen species (ROS) and increase of antioxidant defences (antioxidant enzymes and intracellular gluthation,GSH levels), while induction of cell death correlates with an increase on intracellular ROS and decrease of antioxidant defences. Moreover, cell death can be prevented by other well-known antioxidants or can be increased by hydrogen peroxide. Thus, tumour cell fate will depend on the ability of melatonin to induce either an antioxidant environment—related to the antiproliferative effect or a prooxidant environment related to the cytotoxic effect.  相似文献   

2.
The production of ROS is an inevitable consequence of metabolism. However, high levels of ROS within a cell can be lethal and so the cell has a number of defences against oxidative cell stress. Occasionally the cell's antioxidant mechanisms fail and oxidative stress occurs. High levels of ROS within a cell have a number of direct and indirect consequences on cell signalling pathways and may result in apoptosis or necrosis. Although some of the indirect effects of ROS are well known, limitations in technology mean that the direct effects of the cell's redox environment upon proteins are less understood. Recent work by a number of groups has demonstrated that ROS can directly modify signalling proteins through different modifications, for example by nitrosylation, carbonylation, di-sulphide bond formation and glutathionylation. These modifications modulate a protein's activity and several recent papers have demonstrated their importance in cell signalling events, especially those involved in cell death/survival. Redox modification of proteins allows for further regulation of cell signalling pathways in response to the cellular environment. Understanding them may be critical for us to modulate cell pathways for our own means, such as in cytotoxic drug treatments of cancer cells. Protein modifications mediated by oxidative stress can modulate apoptosis, either through specific protein modifications resulting in regulation of signalling pathways, or through a general increase in oxidised proteins resulting in reduced cellular function. This review discusses direct oxidative protein modifications and their effects on apoptosis.  相似文献   

3.
The aim of this study was to evaluate melatonin cytotoxicity by measuring its effects on various cellular targets. Cell viability, intracellular reduced glutathione (GSH) level, and reactive oxygen species (ROS) production were assessed in the human liver cell line (HepG2), after incubation with increasing melatonin concentrations (0.1-10,000 microM). The incubation times tested were 24, 72, and 96 h for cell viability and intracellular GSH level, and 15 and 45 minutes for ROS production. Cellular target evaluations were possible in living cells by means of a new microplate cytofluorimeter. This technology was suitable for the assessment of cell viability, GSH level, and ROS overproduction with, respectively, neutral red, monochlorobimane (mBCl), and 2',7'-dichlorofluorescin diacetate (DCFH-DA) fluorescent probes. At the lowest melatonin concentrations (0.1-10 microM) and for a relatively short incubation time (24 h), the antioxidant effect of melatonin was revealed by an increased intracellular GSH level, associated to cell viability improvement. In contrast, after longer incubation (96 h), cell viability significantly decreased with these lowest melatonin concentrations (0.1-10 microM). Moreover, high melatonin concentrations (1,000-10,000 microM) induced GSH depletion. This oxidative stress is associated with ROS overproduction from 10 microM after only 15 minutes of incubation. This dual effect is strong evidence that, in vitro, melatonin can be both antioxidant and prooxidant on the human liver cell line, depending on the concentration and incubation time.  相似文献   

4.
The pineal hormone melatonin has neuroprotective effects in a large number of models of neurodegeneration. Melatonin crosses the blood-brain barrier, shows a decrease in its nocturnal peaks in blood with age that has been associated with the development of neurodegenerative disorders, and has been shown to be harmless at high concentrations. These properties make melatonin a potential therapeutic agent against neurodegenerative disorders but the pathways involved in such neuroprotective effects remain unknown. In the present report we study the intracellular pathways implicated in the complete neuroprotection provided by melatonin against glutamate-induced oxytosis in the HT22 mouse hippocampal cell line. Our results strongly suggest that melatonin prevents oxytosis through a direct antioxidant effect specifically targeted at the mitochondria. Firstly, none of the described transducers of melatonin signalling seems to be implicated in the neuroprotection provided by this indole. Secondly, melatonin does not prevent cytosolic GSH depletion-dependent increase in reactive oxygen species (ROS), but it totally prevents mitochondrial ROS production despite the fact that the latter is much higher than the former. And finally, there is a high correlation between the concentration at which melatonin and closely related indoles exert a direct antioxidant effect in vitro and a neuroprotective effect against glutamate-induced oxytosis.  相似文献   

5.
Abstract

The production of ROS is an inevitable consequence of metabolism. However, high levels of ROS within a cell can be lethal and so the cell has a number of defences against oxidative cell stress. Occasionally the cell's antioxidant mechanisms fail and oxidative stress occurs. High levels of ROS within a cell have a number of direct and indirect consequences on cell signalling pathways and may result in apoptosis or necrosis. Although some of the indirect effects of ROS are well known, limitations in technology mean that the direct effects of the cell's redox environment upon proteins are less understood. Recent work by a number of groups has demonstrated that ROS can directly modify signalling proteins through different modifications, for example by nitrosylation, carbonylation, di-sulphide bond formation and glutathionylation. These modifications modulate a protein's activity and several recent papers have demonstrated their importance in cell signalling events, especially those involved in cell death/survival. Redox modification of proteins allows for further regulation of cell signalling pathways in response to the cellular environment. Understanding them may be critical for us to modulate cell pathways for our own means, such as in cytotoxic drug treatments of cancer cells. Protein modifications mediated by oxidative stress can modulate apoptosis, either through specific protein modifications resulting in regulation of signalling pathways, or through a general increase in oxidised proteins resulting in reduced cellular function. This review discusses direct oxidative protein modifications and their effects on apoptosis.  相似文献   

6.
Here, we present differential cytotoxic responses to two different doses of photodynamic therapies (PDTs; low-dose PDT [LDP] and high-dose PDT [HDP]) using a chlorin-based photosensitizer, DH-II-24, in human gastric and bladder cancer cells. Fluorescence-activated cell sorting analysis using Annexin V and propidium iodide (PI) showed that LDP induced apoptotic cell death, whereas HDP predominantly caused necrotic cell death. The differential cytotoxic responses to the two PDTs were further confirmed by a DiOC(6) and PI double-staining assay via confocal microscopy. LDP, but not HDP, activated caspase-3, which was inhibited by Z-VAD, Trolox, and BAPTA-AM. LDP and HDP demonstrated opposite effects on intracellular reactive oxygen species (ROS)/Ca(2+) signals; LDP stimulated intracellular ROS production, contributing to a transient increase of intracellular Ca(2+) , whereas HDP induced a massive and prolonged elevation of intracellular Ca(2+) responsible for the transient production of intracellular ROS. In addition, the two PDTs also increased in situ transglutaminase 2 (TG2) activity, with a higher stimulation by HDP, and this increase in activity was prevented by Trolox, BAPTA-AM, and TG2-siRNA. LDP-induced apoptotic cell death was strongly inhibited by Trolox and TG2-siRNA and moderately suppressed by BAPTA-AM. However, HDP-mediated necrotic cell death was partially inhibited by BAPTA-AM but not by TG2-siRNA. Thus, these results demonstrate that LDP and HDP induced apoptotic and necrotic cell death by differential signaling mechanisms involving intracellular Ca(2+) , ROS, and TG2.  相似文献   

7.
Vertebrate limb development is a well-studied model of apoptosis; however, little is known about the intracellular molecules involved in activating the cell death machinery. We have shown that high levels of reactive oxygen species (ROS) are present in the interdigital 'necrotic' tissue of mouse autopod, and that antioxidants can reduce cell death. Here, we determined the expression pattern of several antioxidant enzymes in order to establish their role in defining the areas with high ROS levels. We found that the genes encoding the superoxide dismutases and catalase are expressed in autopod, but they are downregulated in the interdigital regions at the time ROS levels increased and cell death was first detected. The possible role of superoxide and/or peroxide in activating cell death is supported by the protective effect of a superoxide dismutase/catalase mimetic. Interestingly, we found that peroxidase activity and glutathione peroxidase-4 gene (Gpx4) expression were restricted to the non-apoptotic tissue (e.g., digits) of the developing autopod. Induction of cell death with retinoic acid caused an increase in ROS and decrease in peroxidase activity. Even more inhibition of glutathione peroxidase activity leads to cell death in the digits, suggesting that a decrease in antioxidant activity, likely due to Gpx4, caused an increase in ROS levels, thus triggering apoptosis.  相似文献   

8.
It has been reported that the bioactive intermediate metabolites of trazodone might cause hepatotoxicity. This study was designed to investigate the exact mechanism of hepatocellular injury induced by trazodone as well as the protective effects of taurine and/or melatonin against this toxicity. Freshly isolated rat hepatocytes were used. Trazodone was cytotoxic and caused cell death with LC50 of 300 µm within 2 h. Trazodone caused an increase in reactive oxygen species (ROS) formation, malondialdehyde accumulation, depletion of intracellular reduced glutathione (GSH), rise of oxidized glutathione disulfide (GSSG), and a decrease in mitochondrial membrane potential, which confirms the role of oxidative stress in trazodone‐induced cytotoxicity. Preincubation of hepatocytes with taurine prevented ROS formation, lipid peroxidation, depletion of intracellular reduced GSH, and increase of oxidized GSSG. Taurine could also protect mitochondria against trazodone‐induced toxicity. Administration of melatonin reduced the toxic effects of trazodone in isolated rat hepatocytes. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:457‐462, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21509  相似文献   

9.
Cartilage repair by mesenchymal stem cells (MSCs) often occurs in diseased joints in which the inflamed microenvironment impairs chondrogenic maturation and causes neocartilage degradation. In this environment, melatonin exerts an antioxidant effect by scavenging free radicals. This study aimed to investigate the anti-inflammatory and chondroprotective effects of melatonin on human MSCs in a proinflammatory cytokine-induced arthritic environment. MSCs were induced toward chondrogenesis in the presence of interleukin-1 β (IL-1β) or tumor necrosis factor α (TNF-α) with or without melatonin. Levels of intracellular reactive oxygen species (ROS), hydrogen peroxide, antioxidant enzymes, and cell viability were then assessed. Deposition of glycosaminoglycans and collagens was also determined by histological analysis. Gene expression of chondrogenic markers and matrix metalloproteinases (MMPs) was assessed by real-time polymerase chain reaction. In addition, the involvement of the melatonin receptor and superoxide dismutase (SOD) in chondrogenesis was investigated using pharmacologic inhibitors. The results showed that melatonin significantly reduced ROS accumulation and increased SOD expression. Both IL-1β and TNF-α had an inhibitory effect on the chondrogenesis of MSCs, but melatonin successfully restored the low expression of cartilage matrix and chondrogenic genes. Melatonin prevented cartilage degradation by downregulating MMPs. The addition of luzindole and SOD inhibitors abrogated the protective effect of melatonin associated with increased levels of ROS and MMPs. These results demonstrated that proinflammatory cytokines impair the chondrogenesis of MSCs, which was rescued by melatonin treatment. This chondroprotective effect was potentially correlated to decreased ROS, preserved SOD, and suppressed levels of MMPs. Thus, melatonin provides a new strategy for promoting cell-based cartilage regeneration in diseased or injured joints.  相似文献   

10.
Lung cancer is the most commonly diagnosed cancer worldwide with a high mortality rate. In this study, the therapeutic effect of combination valproic acid and niclosamide was investigated on human lung cancer cell line. The effects of the compounds alone and combination therapy on cell viability were determined by sulforhodamine B and adenosine 5′-triphosphate viability assays. Flow cytometry was used to determine the cell death mechanism and DNA damage levels responsible for the cytotoxic effects of combination therapy. The presence of apoptosis in cells was supported by fluorescence microscopy and also by using inhibitors of the apoptotic signaling pathway. The increase in cellular reactive oxygen species (ROS) level in combination therapy was determined by H2DCFDA staining. The effect of N-acetyl-l -cysteine combination on ROS increase was investigated on cell viability. In addition, the expression levels of the proteins associated with epigenetic regulation and cell death were analyzed by Western blotting and gene expression levels were determined using real-time quantitative polymerase chain reaction.It was observed that the combination therapy showed a cytotoxic effect on the A549 lung cancer cells compared to the individual use of the inhibitors. The absence of this effect on normal lung cells revealed the presence of a selective toxic effect. When the mechanism of cytotoxicity is examined, it has been observed that combination therapy initiates the activation of tumor necrosis receptors and causes apoptosis by activated caspase. It was also observed that this extrinsic apoptotic pathway was activated on the mitochondrial pathway. In addition, ER stress and mitochondrial membrane potential loss associated with increased ROS levels induce cell death. When the data in this study were evaluated, combination therapy caused a dramatic decrease in cell viability by inducing the extrinsic apoptotic pathway in lung cancer cell line. Therefore, it was concluded that it can be used as an effective and new treatment option for lung cancer.  相似文献   

11.
Phenytoin is a widely used antiepileptic drug. However, hepatotoxicity is one of its adverse effects reported in some patients. The mechanism(s) by which phenytoin causes hepatotoxicity is not clear yet. This study was designed to evaluate the cytotoxic mechanism(s) of phenytoin toward rat hepatocytes (whose cytochrome P450 enzymes had been induced by Phenobarbital). Furthermore, the effect of taurine and/or melatonin on this toxicity was investigated. Cell death, reactive oxygen species (ROS) formation, lipid peroxidation (LPO), and mitochondrial depolarization were monitored as toxicity markers. Results showed that phenytoin caused an elevation in ROS formation, depletion of intracellular reduced glutathione, increase in cellular oxidized glutathione, enhancement of LPO, and mitochondrial damage. Taurine (1 mM) and/or melatonin (1 mM) administration decreased the intensity of cellular injury caused by phenytoin. This study suggests the protective role of taurine and/or melatonin against phenytoin‐induced cellular damage probably through their reactive radical scavenging properties and their effects on mitochondria.  相似文献   

12.
Acanthopanax sessiliflorus, a small woody shrub has traditionally been referred to have anticancer activity, but it has not been scientifically explored so far. Therefore, to investigate the anticancer effects of A. sessiliflorus stem bark extracts (ASSBE), MDA-MB-231 and MCF-7 human breast cancer cells were treated with one of its bioactive fractions, n-hexane (ASSBE-nHF). Cytotoxicity (24 h) was determined by MTT assay and antiproliferative effect was assessed by counting cell numbers after 72 h treatment using hemocytometer. The role of ASSBE-nHF on apoptosis was analysed by annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation pattern and immunoblotting of apoptosis markers. For the assay of enhanced production of ROS and mitochondrial membrane depolarization, specific stains such as DCFH-DA and JC-1 were used, respectively. To understand the mode of action of ASSBE-nHF on MCF-7 cells, cells were pre-treated with antioxidant, n-acetylcysteine. The hexane fraction of ASSBE showed maximum activity towards human breast cancer cells compared to other two fractions at a minimal concentration of 50 μg/ml. The annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation and immunoblotting assays showed that ASSBE-nHF induces non-apoptotic cell death in MCF-7 and MDA-MB-231 cells. ASSBE-nHF significantly increased the production of ROS and decreased the mitochondrial membrane potential (MMP) in MCF-7 cells. Similarly, it decreased the MMP in MDA-MB-231 cells, but had no effect on ROS production. Further, the cytotoxic effect of ASSBE-nHF in MCF-7 cells was not significantly reversed even in the presence of n-acetylcysteine, an antioxidant. These findings revealed that ASSBE-nHF induces non-apoptotic cell death via mitochondria associated with both ROS dependent and independent pathways in human breast cancer cells.  相似文献   

13.
Trillium tschonoskii Maxim. has been used to treat several diseases including cancers in folk medicine. However, the mechanisms responsible for T. tschonoskii extract-induced apoptosis are not clear. This study was mainly undertaken to identify the major biochemical changes in a lung cancer cell line upon treatment with an T. tschonoskii extract (TTME), and to investigate the functional relationship between these changes. The n-butanol extract was used to evaluate the mechanism of induction of apoptosis in A549 human lung cancer cells and its effects on mitochondrial function and production of reactive oxygen species (ROS). The n-butanol extract of T. tschonoskii has cytotoxic, antiproliferative, and morphological effects on the lung cancer cell line. T. tschonoskii mainly leads to apoptosis of cancer cells with a concomitant increase in the release of cytochrome c and a loss of mitochondrial membrane potential in a dose-dependent manner. A rapid increase in the level of intracellular ROS and an accumulation of cells in the G2/M and S phase of the cell cycle were also observed in treated cells. These observations suggest that the n-butanol extract of T. tschonoskii has promising anticancer activities, which could be useful in cancer treatment.  相似文献   

14.
We have previouslyreported that low doses of melatonin inhibit apoptosis in both dexamethasone-treated cultured thymocytes (standard model for the study of apoptosis) and the intact thymus. Here we elucidate the mechanism by which this agent protects thymocytes from cell death induced by glucocorticoids. Our results demonstrate an effect of melatonin on the mRNA for antioxidant enzymes in thymocytes, also showing an unexpected regulation by dexamethasone of these mRNA. Both an effect of melatonin on the general machinery of apoptosis and a possible regulation of the expression of the cell death related genes bcl-2 and p53 are shown not to be involved. We found melatonin to down-regulate the mRNA for the glucocorticoid receptor in thymocytes (glucocorticoids up-regulate their own receptor). The decrease by melatonin of mRNA levels for this receptor in IM-9 cells (where glucocorticoids down-regulate it) demonstrates that melatonin actually down-regulates glucocorticoid receptor. These findings allow us to propose the effects of melatonin on this receptor as the likely mediator of its thymocyte protection against dexamethasone-induced cell death. This effect of melatonin, given the oxidant properties of glucocorticoids, adds another mechanism to explain its antioxidant effects.  相似文献   

15.
16.
In this study, the antiproliferative effect of bis(acetylacetonato)-oxidovanadium(IV) and sodium metavanadate and the underlying mechanisms were investigated in human pancreatic cancer cell line AsPC-1. The results showed that both exhibited an antiproliferative effect through inducing G2/M cell cycle arrest and can also cause elevation of reactive oxygen species (ROS) levels in cells. Moreover, the two vanadium compounds induced the activation of both PI3K/AKT and MAPK/ERK signaling pathways dose- and time-dependently, which could be counteracted with the antioxidant N-acetylcysteine. In the presence of MEK-1 inhibitor, the degradation of Cdc25C, inactivation of Cdc2 and accumulation of p21 were relieved. However, the treatment of AKT inhibitor did not cause any significant effect. Therefore, it demonstrated that the ROS-induced sustained MAPK/ERK activation rather than AKT contributed to vanadium compounds-induced G2/M cell cycle arrest. The current results also exhibited that the two vanadium compounds did not induce a sustained increase of ROS generation, but the level of ROS reached a plateau instead. The results revealed that an intracellular feedback loop may be against the elevated ROS level induced by vanadate or VO(acac)2, evidenced by the increased GSH content, the unchanged level at the expression of antioxidant enzymes. Therefore, vanadium compounds can be regarded as a novel type of anticancer drugs through the prolonged activation of MAPK/ERK pathway but retained AKT activity. The present results provided a proof-of-concept evidence that vanadium-based compounds may have the potential as both antidiabetic and antipancreatic cancer agents to prevent or treat patients suffering from both diseases.  相似文献   

17.
Differential redox homeostasis in normal and malignant cells suggests that pro-oxidant-induced upregulation of cellular reactive oxygen species (ROS) should selectively target cancer cells without compromising the viability of untransformed cells. Consequently, a pro-oxidant deviation well-tolerated by nonmalignant cells might rapidly reach a cell-death threshold in malignant cells already at a high setpoint of constitutive oxidative stress. To test this hypothesis, we took advantage of a selected number of amine-pyridine-based Fe(II) complexes that operate as efficient and robust oxidation catalysts of organic substrates upon reaction with peroxides. Five of these Fe(II)-complexes and the corresponding aminopyridine ligands were selected to evaluate their anticancer properties. We found that the iron complexes failed to display any relevant activity, while the corresponding ligands exhibited significant antiproliferative activity. Among the ligands, none of which were hemolytic, compounds 1, 2 and 5 were cytotoxic in the low micromolar range against a panel of molecularly diverse human cancer cell lines. Importantly, the cytotoxic activity profile of some compounds remained unaltered in epithelial-to-mesenchymal (EMT)-induced stable populations of cancer stem-like cells, which acquired resistance to the well-known ROS inducer doxorubicin. Compounds 1, 2 and 5 inhibited the clonogenicity of cancer cells and induced apoptotic cell death accompanied by caspase 3/7 activation. Flow cytometry analyses indicated that ligands were strong inducers of oxidative stress, leading to a 7-fold increase in intracellular ROS levels. ROS induction was associated with their ability to bind intracellular iron and generate active coordination complexes inside of cells. In contrast, extracellular complexation of iron inhibited the activity of the ligands. Iron complexes showed a high proficiency to cleave DNA through oxidative-dependent mechanisms, suggesting a likely mechanism of cytotoxicity. In summary, we report that, upon chelation of intracellular iron, the pro-oxidant activity of amine-pyrimidine-based iron complexes efficiently kills cancer and cancer stem-like cells, thus providing functional evidence for an efficient family of redox-directed anti-cancer metallodrugs.  相似文献   

18.
Melatonin is an endogenously generated molecule with free radical scavenging and antioxidant properties. Here, we studied the antiproliferative role of melatonin and other antioxidants on transformed Chinese hamster ovarian cells. Melatonin reduces cell proliferation in a dose- and time-dependent manner. Natural antioxidants which appear in edible plants including resveratrol and vitamin E mimicked the effect of melatonin. Flow cytometer analysis revealed that melatonin treatment reduces the number of cells in S-phase and increases cells in both G0/G1 and G2/M gaps. In addition, melatonin, as well as trolox, caused a clear morphological change by inducing the cells to become spindle shaped and fibroblast-like. Its effect is a reversible phenomenon that disappeared when melatonin was withdrawn from the culture medium. GSH levels are increased after melatonin treatment but pharmacologically blockade of GSH synthesis did not abolish melatonin's antiproliferative effect. Reduction of cell proliferation and the apparent induction of cell differentiation overlapped with melatonin's ability to change the intracellular redox state of CHO cells. We conclude that the cellular redox state may be involved in cellular transformation caused by antioxidants such as melatonin and trolox.  相似文献   

19.
Melatonin is an indoleamine secreted by the pineal gland that shows multiple tasks. This ubiquitously acting free radical scavenger has recently been shown to stimulate the production of reactive oxygen species (ROS) in tumour cells, making them undergo apoptosis, whilst it prevents apoptosis in healthy cells. The mechanisms by which melatonin exerts these dual actions are, however, not yet clearly understood. Thus, the aim of this study was to further investigate how melatonin can enhance oxidative stress-induced apoptosis in a leukaemia cell line. The results show that melatonin increased the apoptotic effects of H(2)O(2) in human myeloid HL-60 cells as assessed by cellular viability, mitochondrial permeability transition induction, mitochondrial membrane depolarization, ROS generation, caspases 3, 8 and 9 activity, phosphatidylserine externalization, and DNA fragmentation techniques. When healthy leucocytes were exposed to H(2)O(2), melatonin increased the viability of the cells. Taken together, the findings indicate that melatonin is a potential physiological tool capable of protecting healthy cells from chemotherapy-induced ROS production as well as inducing tumour cell death. Because cancer cells manifest increased oxidative stress as a result of their elevated metabolism, the use of melatonin may be useful in impairing their ROS buffering capacity.  相似文献   

20.
Breast cancer is the most common neoplastic disorder diagnosed in women. The main goal of this study was to explore the effect of melatonin against breast cancer metastasis and compared this with the actions of taxol (a well-known chemotherapeutic drug), and the impact of their combination against breast cancer metastasis. Melatonin showed no cytotoxic effect while taxol showed antiproliferative and cytotoxic effects on MCF-7 and MDA-MB-231 cells. Furthermore, melatonin inhibited the generation of reactive oxygen species. Melatonin and taxol clearly decreased cell migration and invasion at low doses, especially those matching the normal physiological concentration at night. Melatonin and taxol markedly reduced DJ-1 and ID-1 and increased KLF17 messenger RNA and protein expression levels. The present results also showed that melatonin and taxol induced GSK3-β nuclear and Snail cytosolic localization. These changes were accompanied by a concurrent rise in E-cadherin expression. The above data show that normal levels of melatonin may help in preventing breast cancer metastasis through inhibiting DJ-1/KLF17/ID-1 signaling pathway. The combination of melatonin and taxol is a potent candidate against breast cancer metastasis, better than using melatonin or taxol as a single drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号