首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human mitochondrial complex I in health and disease.   总被引:12,自引:0,他引:12  
  相似文献   

2.
Assembly of mitochondrial complex I and defects in disease   总被引:1,自引:0,他引:1  
Isolated complex I deficiency is the most common cause of respiratory chain dysfunction. Defects in human complex I result in energy generation disorders and they are also implicated in neurodegenerative disease and altered apoptotic signaling. Complex I dysfunction often occurs as a result of its impaired assembly. The assembly process of complex I is poorly understood, complicated by the fact that in mammals, it is composed of 45 different subunits and is regulated by both nuclear and mitochondrial genomes. However, in recent years we have gained new insights into complex I biogenesis and a number of assembly factors involved in this process have also been identified. In most cases, these factors have been discovered through their gene mutations that lead to specific complex I defects and result in mitochondrial disease. Here we review how complex I is assembled and the factors required to mediate this process.  相似文献   

3.
We developed a conditional complex I assembly system in a Chinese hamster fibroblast mutant line, CCL16-B2, that does not express the NDUFA1 gene (encoding the MWFE protein). In this mutant, a hemagglutinin (HA) epitope-tagged MWFE protein was expressed from a doxycycline-inducible promoter. The expression of the protein was absolutely dependent on the presence of doxycycline, and the gene could be turned off completely by removal of doxycycline. These experiments demonstrated a key role of MWFE in the pathway of complex I assembly. Upon induction the MWFE.HA protein reached steady-state levels within 24 h, but the appearance of fully active complex I was delayed by another approximately 24 h. The MWFE appeared in a precomplex that probably includes one or more subunits encoded by mtDNA. The fate of MWFE and the stability of complex I were themselves very tightly linked to the activity of mitochondrial protein synthesis and to the assembly of subunits encoded by mtDNA (ND1-6 and ND4L). This novel conditional system can shed light not only on the mechanism of complex I assembly but emphasizes the role of subunits previously thought of as "accessory." It promises to have broader applications in the study of cellular energy metabolism and production of reactive oxygen species and related processes.  相似文献   

4.
Rutger O. Vogel  Leo G.J. Nijtmans 《BBA》2007,1767(10):1215-1227
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of > 80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.  相似文献   

5.
Human mitochondrial complex I assembly: a dynamic and versatile process   总被引:3,自引:0,他引:3  
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of >80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.  相似文献   

6.
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.  相似文献   

7.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multiprotein enzyme of the oxidative phosphorylation system. Its assembly in human cells is poorly understood and no proteins assisting this process have yet been described. A good candidate is NDUFAF1, the human homologue of Neurospora crassa complex I chaperone CIA30. Here, we demonstrate that NDUFAF1 is a mitochondrial protein that is involved in the complex I assembly process. Modulating the intramitochondrial amount of NDUFAF1 by knocking down its expression using RNA interference leads to a reduced amount and activity of complex I. NDUFAF1 is associated to two complexes of 600 and 700 kDa in size of which the relative distribution is altered in two complex I deficient patients. Analysis of NDUFAF1 expression in a conditional complex I assembly system shows that the 700 kDa complex may represent a key step in the complex I assembly process. Based on these data, we propose that NDUFAF1 is an important protein for the assembly/stability of complex I.  相似文献   

8.
In humans, complex I of the respiratory chain is composed of seven mitochondrial DNA (mtDNA)-encoded and 38 nuclear-encoded subunits that assemble together in a process that is poorly defined. To date, only two complex I assembly factors have been identified and how each functions is not clear. Here, we show that the human complex I assembly factor CIA30 (complex I intermediate associated protein) associates with newly translated mtDNA-encoded complex I subunits at early stages in their assembly before dissociating at a later stage. Using antibodies we identified a CIA30-deficient patient who presented with cardioencephalomyopathy and reduced levels and activity of complex I. Genetic analysis revealed the patient had mutations in both alleles of the NDUFAF1 gene that encodes CIA30. Complex I assembly in patient cells was defective at early stages with subunits being degraded. Complementing the deficiency in patient fibroblasts with normal CIA30 using a novel lentiviral system restored steady-state complex I levels. Our results indicate that CIA30 is a crucial component in the early assembly of complex I and mutations in its gene can cause mitochondrial disease.  相似文献   

9.
C6ORF66 is an assembly factor of mitochondrial complex I   总被引:3,自引:0,他引:3       下载免费PDF全文
Homozygosity mapping was performed in five patients from a consanguineous family who presented with infantile mitochondrial encephalomyopathy attributed to isolated NADH:ubiquinone oxidoreductase (complex I) deficiency. This resulted in the identification of a missense mutation in a conserved residue of the C6ORF66 gene, which encodes a 20.2 kDa mitochondrial protein. The mutation was also detected in a patient who presented with antenatal cardiomyopathy. In muscle of two patients, the levels of the C6ORF66 protein and of the fully assembled complex I were markedly reduced. Transfection of the patients' fibroblasts with wild-type C6ORF66 cDNA restored complex I activity. These data suggest that C6ORF66 is an assembly factor of complex I. Interestingly, the C6ORF66 gene product was previously shown to promote breast cancer cell invasiveness.  相似文献   

10.
1. Phosphatidylcholines of different acyl-chain composition and a preparation of ATPase complex depleted of phospholipids have been employed in order to evaluate the contribution of lipid bilayer to the assembly of this multi-subunit component of mitochondrial membrane. 2. At the minimal requirement for bilayer assembly (dinonanoylphosphatidylcholine, mixtures of lysophosphatidylcholine and phosphatidylcholine), fragments with oligomycin-insensitive ATPase activity are reconstituted. Conformational changes with dislocation of ATPase complex subunits may explain these results. 3. At increased strength of acyl-chain interaction (dilauroylphosphatidylcholine and higher homologues), the damage to the ATPase complex is prevented but this is not sufficient to achieve functional restoration. Bilayers with a tendency to coalesce and fuse aggregate in large amounts with the complex and yield low ATPase reactivation. Bilayers of high stability yield complexes with physiological content of phospholipids and efficient ATPase activity. Transition between these two possibilities is found at sixteen carbon acyl-chains. Only at this chain length does the cholate dialysis procedure of reconstitution become feasible. 4. It is concluded that a minimum of 16 carbon atoms in each chain are required to organize a bilayer structurable to maintain the ATPase complex conformation and to sustain the transmembrane position of the whole assembly.  相似文献   

11.
A mitochondrial protein compendium elucidates complex I disease biology   总被引:1,自引:0,他引:1  
Mitochondria are complex organelles whose dysfunction underlies a broad spectrum of human diseases. Identifying all of the proteins resident in this organelle and understanding how they integrate into pathways represent major challenges in cell biology. Toward this goal, we performed mass spectrometry, GFP tagging, and machine learning to create a mitochondrial compendium of 1098 genes and their protein expression across 14 mouse tissues. We link poorly characterized proteins in this inventory to known mitochondrial pathways by virtue of shared evolutionary history. Using this approach, we predict 19 proteins to be important for the function of complex I (CI) of the electron transport chain. We validate a subset of these predictions using RNAi, including C8orf38, which we further show harbors an inherited mutation in a lethal, infantile CI deficiency. Our results have important implications for understanding CI function and pathogenesis and, more generally, illustrate how our compendium can serve as a foundation for systematic investigations of mitochondria.  相似文献   

12.
The biogenesis of mitochondrial NADH:ubiquinone oxidoreductase (complex I) requires several assembly chaperones. These so-called complex I assembly factors have emerged as a new class of human disease genes. Here, we identified putative assembly factor homologues in Caenorhabditis elegans. We demonstrate that two candidates (C50B8.3/NUAF-1, homologue of NDUFAF1 and R07H5.3/NUAF-3, homologue of NDUFAF3) clearly affect complex I function. Assembly factor deficient worms were shorter, showed a diminished brood size and displayed reduced fat content. Our results suggest that mitochondrial complex I biogenesis is evolutionarily conserved. Moreover, Caenorhabditis elegans appears to be a promising model organism to study assembly factor related human diseases.  相似文献   

13.
  相似文献   

14.
Heo JY  Park JH  Kim SJ  Seo KS  Han JS  Lee SH  Kim JM  Park JI  Park SK  Lim K  Hwang BD  Shong M  Kweon GR 《PloS one》2012,7(3):e32629
DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O(2) consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease.  相似文献   

15.
Mitochondrial complex I is the largest multimeric enzyme of the respiratory chain. The lack of a model system with facile genetics has limited the molecular dissection of complex I assembly. Using Chlamydomonas reinhardtii as an experimental system to screen for complex I defects, we isolated, via forward genetics, amc1-7 nuclear mutants (for assembly of mitochondrial complex I) displaying reduced or no complex I activity. Blue native (BN)-PAGE and immunoblot analyses revealed that amc3 and amc4 accumulate reduced levels of the complex I holoenzyme (950 kDa) while all other amc mutants fail to accumulate a mature complex. In amc1, -2, -5-7, the detection of a 700 kDa subcomplex retaining NADH dehydrogenase activity indicates an arrest in the assembly process. Genetic analyses established that amc5 and amc7 are alleles of the same locus while amc1-4 and amc6 define distinct complementation groups. The locus defined by the amc5 and amc7 alleles corresponds to the NUOB10 gene, encoding PDSW, a subunit of the membrane arm of complex I. This is the first report of a forward genetic screen yielding the isolation of complex I mutants. This work illustrates the potential of using Chlamydomonas as a genetically tractable organism to decipher complex I manufacture.  相似文献   

16.
17.
18.
Today, Karl Deisseroth was awarded the 4 million euro 2017 Else Kröner Fresenius Prize for his discoveries of optogenetics and of hydrogel‐tissue chemistry, and for developing circuit‐level insight into depression. We asked him how his and related work enhances our understanding of the brain and psychiatric diseases at the molecular level.  相似文献   

19.
Biogenesis of human mitochondrial complex I (CI) requires the coordinated assembly of 45 subunits derived from both the mitochondrial and nuclear genome. The presence of CI subcomplexes in CI-deficient cells suggests that assembly occurs in distinct steps. However, discriminating between products of assembly or instability is problematic. Using an inducible NDUFS3-green fluorescent protein (GFP) expression system in HEK293 cells, we here provide direct evidence for the stepwise assembly of CI. Upon induction, six distinct NDUFS3-GFP-containing subcomplexes gradually appeared on a blue native Western blot also observed in wild type HEK293 mitochondria. Their stability was demonstrated by differential solubilization and heat incubation, which additionally allowed their distinction from specific products of CI instability and breakdown. Inhibition of mitochondrial translation under conditions of steady state labeling resulted in an accumulation of two of the NDUFS3-GFP-containing subcomplexes (100 and 150 kDa) and concomitant disappearance of the fully assembled complex. Lifting inhibition reversed this effect, demonstrating that these two subcomplexes are true assembly intermediates. Composition analysis showed that this event was accompanied by the incorporation of at least one mitochondrial DNA-encoded subunit, thereby revealing the first entry point of these subunits.  相似文献   

20.
In humans, complex I dysfunction has been observed in a high percentage of patients with mitochondrial myopathy. Analysis of mitochondria from these patients suggests the function and assembly of complex I is particularly susceptible to abnormalities of mitochondrial DNA, involving either point mutations of tRNA genes or major deletions. The evidence for a complex I defect in Parkinson's disease is accumulating, although the cause of this deficiency or the role it plays in the events that culminate in dopaminergic cell death remains unresolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号