首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deregulation of Akt signaling is important in the brain injuries caused by cerebral ischemia in diabetic animals, and the underlying mechanism is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following focal cerebral ischemia in type 2 diabetic db/db mice and their control littermates non-diabetic db/+ mice. db/db mice showed a significant elevation in the expression of CTMP compared to db/+ mice under normal physiological conditions. After ischemia, db/db mice exhibit higher levels of CTMP expression, decreased Akt kinase activity, adverse neurological deficits and cerebral infarction than db/+ mice. To further certain the effectiveness of Akt signaling to the final outcome of cerebral ischemia, the animals were treated with LY294002, an inhibitor of the Akt pathway, which aggravated the ischemic injury in db/+ mice but not in db/db mice. RNA interference-mediated depletion of CTMP were finally applied in db/db mice, which restored Akt activity, improved neurological scores and reduced infarct volume. These results suggest that elevation of CTMP in diabetic mice suppresses Akt activity and ultimately negatively affects the outcome of ischemia. Inhibitors specifically targeting CTMP may be beneficial in the treatment of cerebral ischemia in patients with diabetes.  相似文献   

2.
Obesity and type 2 diabetes are associated with nonalcoholic steatohepatitis (NASH), but an obese/diabetic animal model that mimics human NASH remains undefined. We examined the induction of steatohepatitis and liver fibrosis in obese and type 2 diabetic db/db mice in a nutritional model of NASH and determined the relationship of the expressions of osteopontin (OPN) and leptin receptors to the pathogenesis of NASH. db/db mice and the corresponding lean and nondiabetic db/m mice were fed a diet deficient in methionine and choline (MCD diet) or control diet for 4 wk. Leptin-deficient obese and diabetic ob/ob mice fed similar diets were used for comparison. MCD diet-fed db/db mice exhibited significantly greater histological inflammation and higher serum alanine aminotransferase levels than db/m and ob/ob mice. Trichrome staining showed marked pericellular fibrosis in MCD diet-fed db/db mice but no significant fibrosis in db/m or ob/ob mice. Collagen I mRNA expression was increased 10-fold in db/db mice, 4-fold in db/m mice, and was unchanged in ob/ob mice. mRNA expressions of OPN, TNF-alpha, TGF-beta, and short-form leptin receptors (Ob-Ra) were significantly increased in db/db mice compared with db/m or ob/ob mice. Parallel increases in OPN and Ob-Ra protein levels were observed in db/db mice. Cultured hepatocytes expressed only Ob-Ra, and leptin stimulated OPN mRNA and protein expression in these cells. In conclusion, our results demonstrate the development of an obese/diabetic experimental model for NASH in db/db mice and suggest an important role for Ob-Ra and OPN in the pathogenesis of NASH.  相似文献   

3.
For determining the implications of circulating endothelial progenitor cells (cEPCs) and cellular membrane microparticles (MPs) in diabetic stroke, levels of EPCs, EPC-MPs, and endothelium-derived MPs (EMPs) and their correlations with blood glucose concentration, cerebral microvascular density (cMVD), and ischemic damage were investigated in type 2 diabetic db/db and db/+ (wild-type control) mice. Therapeutic efficacy of EPC infusion (preincubated with MPs) was also explored. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Ischemic damage and cMVD were determined using histological analyses. The levels of cEPCs and MPs were determined using flow cytometric analyses. EPC generation and functions were evaluated by in vitro cell cultures. Results showed the following. 1) In db/db mice, the basal level of cEPCs was less and cMVDs were lower, but the levels of circulating EPC-MPs and EMPs were more; 2) MCAO induced a larger infarct volume and less of an increase in cEPCs in db/db mice; 3) the level of cEPCs correlated with blood glucose concentration (negatively), cMVD (positively), and ischemic damage (negatively), but the levels of EPC-MPs and EMPs correlated inversely with those parameters; 4) EPCs were reduced and dysfunctional in db/db mice, and preincubation with db/db MPs impaired EPC functions; and 5) infusion of EPCs preincubated with db/+ MPs increased the level of cEPCs and reduced ischemic damage, and these beneficial effects were reduced or lost in EPCs preincubated with db/db MPs. These data suggest that reduced cEPCs, impaired EPC generation/function, and increased production of MPs might be the mechanisms responsible for increased ischemic damage seen in db/db mice.  相似文献   

4.
5.
Control db/+ and diabetic db/db mice at 6 and 12 wk of age were subjected to echocardiography to determine whether contractile function was reduced in vivo and restored in transgenic db/db-human glucose transporter 4 (hGLUT4) mice (12 wk old) in which cardiac metabolism has been normalized. Systolic function was unchanged in 6-wk-old db/db mice, but fractional shortening and velocity of circumferential fiber shortening were reduced in 12-wk-old db/db mice (43.8 +/- 2.1% and 8.3 +/- 0.5 circs/s, respectively) relative to db/+ control mice (59.5 +/- 2.3% and 11.8 +/- 0.4 circs/s, respectively). Doppler flow measurements were unchanged in 6-wk-old db/db mice. The ratio of E and A transmitral flows was reduced from 3.56 +/- 0.29 in db/+ mice to 2.40 +/- 0.20 in 12-wk-old db/db mice, indicating diastolic dysfunction. Thus a diabetic cardiomyopathy with systolic and diastolic dysfunction was evident in 12-wk-old diabetic db/db mice. Cardiac function was normalized in transgenic db/db-hGLUT4 mice, indicating that altered cardiac metabolism can produce contractile dysfunction in diabetic db/db hearts.  相似文献   

6.
Hearts from type 2 diabetic (db/db) mice demonstrate altered substrate utilization with high rates of fatty acid oxidation, decreased functional recovery following ischemia, and reduced cardiac efficiency. Although db/db mice show overall insulin resistance in vivo, we recently reported that insulin induces a marked shift toward glucose oxidation in isolated perfused db/db hearts. We hypothesize that such a shift in metabolism should improve cardiac efficiency and consequently increase functional recovery following low-flow ischemia. Hearts from db/db and nondiabetic (db/+) mice were perfused with 0.7 mM palmitate plus either 5 mM glucose (G), 5 mM glucose and 300 microU/ml insulin (GI), or 33 mM glucose and 900 microU/ml insulin (HGHI). Substrate oxidation and postischemic recovery were only moderately affected by GI and HGHI in db/+ hearts. In contrast, GI and particularly HGHI markedly increased glucose oxidation and improved postischemic functional recovery in db/db hearts. Cardiac efficiency was significantly improved in db/db, but not in db/+ hearts, in the presence of HGHI. In conclusion, insulin and glucose normalize cardiac metabolism, restore efficiency, and improve postischemic recovery in type 2 diabetic mouse hearts. These findings may in part explain the beneficial effect of glucose-insulin-potassium therapy in diabetic patients with cardiac complications.  相似文献   

7.
Diabetes and obesity cause abnormal development of reproductive processes in a variety of species, but the mechanisms that underlie this effect have not been fully elucidated. This study examined the expressional changes of ganglioside GM3 during ovarian maturation, in vitro fertilization (IVF) and early embryonic development in diabetic/obese db/db mice. In high-performance thin-layer chromatography studies, GM3 expression was conspicuously low in the ovaries of db/db mice compared to non-diabetic db/+ mice. Signal detected by anti-GM3 monoclonal antibody was greatly reduced in the primary, secondary and graffian follicles of db/db mice compared to control mice. Results from IVF with ova and sperm from db/db mice showed that GM3 expression during early embryonic development was obviously decreased compared to db/+ mice. This study also elucidated the effects of high glucose (20 and 30 mm) on early embryonic development in ICR strain mice. High glucose caused a decrease in GM3 expression during early embryonic development. Taken together, the results of this study indicate decreased GM3 expression during ovarian maturation and embryonic development of db/db mice, suggesting that alteration of ganglioside expression induced by the diabetic condition may be implicated in the abnormal follicular embryonic development.  相似文献   

8.
Epidemiological studies indicate the incidence of asthma is increased in obese and overweight humans. Responses to ozone (O(3)), an asthma trigger, are increased in obese (ob/ob) mice lacking the satiety hormone leptin. The long form of leptin receptor (Ob-R(b)) is required for satiety; mice lacking this receptor (db/db mice) are also substantially obese. Here, wild-type (WT) and db/db mice were exposed to air or O(3) (2 ppm) for 3 h. Airway responsiveness, measured by the forced oscillation technique, was greater in db/db than WT mice after air exposure. O(3)-induced increases in pulmonary resistance and airway responsiveness were also greater in db/db mice. BALF eotaxin, IL-6, KC, and MIP-2 increased 4 h after O(3) exposure and subsided by 24 h, whereas protein and neutrophils continued to increase through 24 h. For each outcome, the effect of O(3) was significantly greater in db/db than WT mice. Previously published results obtained in ob/ob mice were similar except for O(3)-induced neutrophils and MIP-2, which were not different from WT mice. O(3) also induced pulmonary IL-1beta and TNF-alpha mRNA expression in db/db but not ob/ob mice. Leptin was increased in serum of db/db mice, and pulmonary mRNA expression of short form of leptin receptor (Ob-R(a)) was similar in db/db and WT mice. These data confirm obese mice have innate airway hyperresponsiveness and increased pulmonary responses to O(3). Differences between ob/ob mice, which lack leptin, and db/db mice, which lack Ob-R(b) but not Ob-R(a), suggest leptin, acting through Ob-R(a), can modify some pulmonary responses to O(3).  相似文献   

9.
1. Cytochrome P-450 concentrations were similar in male and female carrier (db/+) and diabetic (db/db) mice. Benzphetamine N-demethylase and styrene oxide hydrolase activities were 47 and 65% lower in db/+ than in db/db mice. 2. UDP-Glucuronosyltransferase activity toward 1-naphthol, estrone and diethylstilbestrol was not different between db/db and db/+, but was 40% higher in db/db mice toward testosterone. 3. Glutathione S-transferase activity toward 1-chloro-2,4-dinitrobenzene and ethacrynic acid was 47 and 59% lower in db/db mice than in male db/+ mice. Female db/+ mice had similar activities to those found in diabetic animals. 4. The differences in enzyme activity between hyperinsulinemic and normal animals suggest that insulin can influence both phase I and phase II biotransformations. 5. Enzyme activities in db/+ and db/db mice were compared to those in 129 REJ and Swiss Webster mice.  相似文献   

10.
Chronic inflammation appears to play a critical role in type 2 diabetes and its complications. Here we tested the hypothesis that this inflammatory dysregulation affects the IL-1beta system and has functional consequences in the brain. Diabetic, db/db, and nondiabetic, db/+, mice were administered i.p. LPS, a potent cytokine inducer, at a dose of 100 microg/kg/mouse. db/db mouse innate immune-associated sickness behavior was 14.8, 33, 44.7, and 34% greater than that of db/+ mice at 2, 4, 8, and 12 h, respectively. When a fixed dose of LPS was used (5 microg/mouse), db/db mouse sickness was again enhanced 18.4, 22.2, and 14.5% at 4, 8, and 12 h as compared with db/+ mice. In diabetic mice, peritoneal macrophages produced more IL-1beta in response to LPS, and peritoneal levels of IL-1beta induced by LPS were increased. Importantly, IL-1R antagonist and type 2 IL-1 receptor (IL-1R2) failed to up-regulate in response to LPS in db/db mice. Finally, both peripheral and central administration of IL-1beta, itself, induced sickness in db/db mice that mimicked the effects of peripheral LPS and was significantly greater than that seen in db/+ mice. Taken together, these results indicate that IL-1beta-mediated innate immunity is augmented in db/db mice both at the periphery and in the brain, and the mechanism is due to diabetes-associated loss of IL-1beta counterregulation.  相似文献   

11.
为研究糜酶在心脏中的功能 ,用明胶酶谱法和放免法检测了糜酶转基因小鼠心脏组织中基质金属蛋白酶及糜酶的活力 .糜酶转基因小鼠心脏组织中糜酶样活力较转基因阴性小鼠升高了约80 % ;而其心脏匀浆液凝胶酶谱分析结果显示在 92 k D处明胶酶活力也升高约 30 % ;经 Western印迹鉴定为基质金属蛋白酶 9,而在蛋白水平上与转基因阴性小鼠无显著差异 .结果提示 ,糜酶转基因小鼠心脏组织中糜酶活力的升高可活化基质金属蛋白酶 9,从而影响心脏胶原代谢 .  相似文献   

12.
Leptin-deficient ob/ob and leptin receptor (Ob-rb)-deficient db/db mice display a marked thymic atrophy and exhibit defective immune responses. Lymphocytes express leptin receptors and leptin exerts direct effects on T cells in vitro. In addition, ob/ob and db/db mice display multiple neuroendocrine and metabolic defects, through which leptin deficiency may indirectly affect the immune system in vivo. To study the relative contributions of direct and indirect effects of leptin on the immune system in a normal environment, we generated bone marrow chimeras (BMCs) by transplantation of leptin receptor-deficient db/db, or control db/+, bone marrow cells into wild-type (WT) recipients. The size and cellularity of the thymus, as well as cellular and humoral immune responses, were similar in db/db to WT and db/+ to WT BMCs. The immune phenotype of db/db mice is thus not explained by a cell autonomous defect of db/db lymphocytes. Conversely, thymus weight and cell number were decreased in the reverse graft setting in WT to db/db BMCs, indicating that expression of the leptin receptor in the environment is important for T cell development. Finally, normal thymocyte development occurred in fetal db/db thymi transplanted into WT hosts, indicating that direct effects of leptin are not required locally in the thymic microenvironment. In conclusion, direct effects of leptin on bone marrow-derived cells and on thymic stromal cells are not necessary for T lymphocyte maturation in normal mice. In contrast, leptin receptor deficiency affects the immune system indirectly via changes in the systemic environment.  相似文献   

13.
In this study, we evaluated the pharmacological effects of Ganoderma lucidum (G. lucidum) (water-extract) (0.003, 0.03 and 0.3 g/kg, 4-week oral gavage) consumption using the lean (+db/+m) and the obese/diabetic (+db/+db) mice. Different physiological parameters (plasma glucose and insulin levels, lipoproteins-cholesterol levels, phosphoenolpyruvate carboxykinase (PEPCK), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and isolated aorta relaxation of both species were measured and compared. G. lucidum (0.03 and 0.3 g/kg) lowered the serum glucose level in +db/+db mice after the first week of treatment whereas a reduction was observed in +db/+m mice only fed with 0.3 g/kg of G. lucidum at the fourth week. A higher hepatic PEPCK gene expression was found in +db/+db mice. G. lucidum (0.03 and 0.3 g/kg) markedly reduced the PEPCK expression in +db/+db mice whereas the expression of PEPCK was attenuated in +db/+m mice (0.3 g/kg G. lucidum). HMG CoA reductase protein expression (in both hepatic and extra-hepatic organs) and the serum insulin level were not altered by G. lucidum. These data demonstrate that G. lucidum consumption can provide beneficial effects in treating type 2 diabetes mellitus (T2DM) by lowering the serum glucose levels through the suppression of the hepatic PEPCK gene expression.  相似文献   

14.
Adrenalectomy (ADX) prevents the excessive weight gain in the genetically obese ob/ob and db/db mice. To test the possibility that this results from increased energy expenditure due to increased thermogenesis in brown adipose tissue (BAT), we measured GDP binding to mitochondria from interscapular brown adipose tissue (BAT) in db/db and ob/ob mice and their lean controls after adrenalectomy, with and without corticosterone replacement. Both the vehicle treated and corticosterone treated db/db and ob/ob mice had lower body weights than the sham-operated mice GDP binding to mitochondria from IBAT was significantly lower in both the db/db and ob/ob mice than in their lean controls. Adrenalectomy significantly increased GDP binding in all mice compared to the respective sham-operated mice, but, the percentage increase was always greater in the db/db and ob/ob mice. Corticosterone treatment of adrenalectomized db/db, ob/ob or lean mice lowered GDP binding to sham levels. Our data confirm previous findings that adrenalectomy results in increased GDP binding to mitochondria from IBAT. Injections of corticosterone into adrenalectomized mice results in a decrease in GDP binding to values which are similar to values in sham-operated mice. Thus adrenalectomy may inhibit the development of obesity by increasing the thermic activity in IBAT.  相似文献   

15.
Adrenalectomy in young obese (ob/ob) and the diabetic (db/db) mouse slowed body weight gain. Treatment of adrenalectomized ob/ob mice with cortisone or deoxycorticosterone acetate (DOCA) significantly increased weight gain in a dose-related manner. Cortisone had no effect on weight gain on lean mice and treatment with dehydroepiandrosterone sulfate was without effect on either ob/ob or lean mice. The increment in body weight of adrenalectomized ob/ob mice treated with corticosterone and DOCA was associated with an increase in body weight and an increase in food intake. When adrenalectomy was performed at twenty-three days of age (five days before weaning), animals carrying the (db/db) genotype remained lighter than their normal littermates. These data document the importance of the adrenal gland and its steroids for the development and maintenance of many features of the obese or diabetes mouse.  相似文献   

16.
‘Cardiosomes’ (exosomes from cardiomyocytes) have recently emerged as nanovesicles (30–100 nm) released in the cardiosphere by myocytes and cardiac progenitor cells, though their role in diabetes remains elusive. Diabetic cardiovascular complications are unequivocally benefitted from exercise; however, the molecular mechanisms need exploration. This novel study is based on our observation that exercise brings down the levels of activated (Matrix Metalloprotease 9) in db/db mice in a model of type 2 diabetes. We hypothesize that exosomes that are released during exercise contain microRNAs (mir455, mir29b, mir323‐5p and mir466) that bind to the 3′ region of MMP9 and downregulate its expression, hence mitigating the deleterious downstream effects of MMP9, which causes extracellular matrix remodeling. First, we confirmed the presence of exosomes in the heart tissue and serum by electron microscopy and flow cytometry, respectively, in the four treatment groups: (i) db/control, (ii) db/control+exercise, (iii) db/db and (iv) db/db+exercise. Use of exosomal markers CD81, Flottilin 1, and acetylcholinesterase activity in the isolated exosomes confirmed enhanced exosomal release in the exercise group. The microRNAs isolated from the exosomes contained mir455, mir29b, mir323‐5p and mir466 as quantified by qRTPCR, however, mir29b and mir455 showed highest upregulation. We performed 2D zymography which revealed significantly lowered activity of MMP9 in the db/db exercise group as compared to non‐exercise group. The immunohistochemical analysis further confirmed the downregulated expression of MMP9 after exercise. Since MMP9 is involved in matrix degradation and leads to fibrosis and myocyte uncoupling, the present study provides a strong evidence how exercise can mitigate these conditions in diabetic patients.  相似文献   

17.
To evaluate preventive effects of pioglitazone on pancreatic beta-cell damage in C57BL/KsJ db/db mice, an obese diabetic animal model, the pancreatic islets were compared morphologically between pioglitazone-treated (100 mg/kg daily po) and untreated db/db mice (n = 7 for each) after a 12-wk intervention (6-18 wk of age). The fasting blood glucose level was significantly improved by the treatment with pioglitazone (260 +/- 12 vs. 554 +/- 62 mg/dl, P < 0.05). The islet mass in the pancreas was significantly greater in pioglitazone-treated mice than in untreated mice (10.2 +/- 1.1 vs. 4.6 +/- 0.2 mg, P < 0.01). Subsequently, biochemical and physiological analyses of the beta-cell function were employed using pioglitazone-treated and untreated db/db mice (n = 6 for each) and pioglitazone-treated and untreated db/+ mice (n = 6 for each). After 2 wk of treatment (10-12 wk of age), the plasma levels of triglyceride and free fatty acid were significantly decreased, whereas the plasma adiponectin level increased significantly compared with the untreated group (65.2 +/- 18.0 vs. 18.3 +/- 1.3 microg/ml, P < 0.05). Pioglitazone significantly reduced the triglyceride content in the islets (43.3 +/- 3.6 vs. 65.6 +/- 7.6 ng/islet, P < 0.05) with improved glucose-stimulated insulin secretion. Pioglitazone showed no significant effects on the biochemical and physiological parameters in db/+ mice. The present study first demonstrated that pioglitazone prevents beta-cell damage in an early stage of the disease progression in db/db mice morphologically and physiologically. Our results suggest that pioglitazone improves glucolipotoxicity by increasing insulin sensitivity and reducing fat accumulation in the pancreatic islets.  相似文献   

18.

Objective

Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice.

Methods

Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively.

Results

Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling.

Conclusions

These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries.  相似文献   

19.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

20.
Obese, diabetic C57BL/Ks db/db mice that lack the long-form leptin receptor exhibit no decrease in body weight or food intake when treated with leptin. Here we compared responses to leptin in two strains of db/db mice: C57BL/6J mice that are hyperglycemic and hyperinsulinemic and C57BL/Ks that are hyperglycemic and normo- or hypoinsulinemic. Chronic intraperitoneal infusion of 10 microgram leptin/day partially reversed hyperglycemia in C57BL/6J male mice but exaggerated the diabetic state of female mice. Bolus intraperitoneal injections of 40 microgram leptin/day did not effect glucose in either strain of male db/db mice, whereas chronic intraperitoneal infusion of 20 microgram leptin/day significantly reduced fasting blood glucose in male mice from both strains, especially C57BL/6J mice. Food intake, body weight, rectal temperature, and body fat did not change. Chronic intraperitoneal infusion of 10 microgram leptin/day significantly reduced body fat in lean db/+ C57BL/6J but not in C57BL/Ks mice. Thus peripherally administered leptin is active in mice that have only short-form leptin receptors, and the response is dependent on the method of leptin administration and the background strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号